Data Exploration And Model Selection

The following tutorials are available from the Wallaroo Tutorials Repository.

Stage 1: Data Exploration And Model Selection

When starting a project, the data scientist focuses on exploration and experimentation, rather than turning the process into an immediate production system. This notebook presents a simplified view of this stage.

Resources

The following resources are used as part of this tutorial:

  • data
    • data/seattle_housing_col_description.txt: Describes the columns used as part data analysis.
    • data/seattle_housing.csv: Sample data of the Seattle, Washington housing market between 2014 and 2015.
  • code
    • postprocess.py: Formats the data after inference by the model is complete.
    • preprocess.py: Formats the incoming data for the model.
    • simdb.py: A simulated database to demonstrate sending and receiving queries.
    • wallaroo_client.py: Additional methods used with the Wallaroo instance to create workspaces, etc.

Steps

The following steps are part of this process:

Import Libraries

First we’ll import the libraries we’ll be using to evaluate the data and test different models.

import numpy as np
import pandas as pd

import sklearn
import sklearn.ensemble

import xgboost as xgb

import seaborn
import matplotlib
import matplotlib.pyplot as plt

import simdb # module for the purpose of this demo to simulate pulling data from a database

matplotlib.rcParams["figure.figsize"] = (12,6)

# ignoring warnings for demonstration
import warnings
warnings.filterwarnings('ignore')

Retrieve Training Data

For training, we will use the data on all houses sold in this market with the last two years. As a reminder, this data pulled from a simulated database as an example of how to pull from an existing data store.

Only a few columns will be shown for display purposes.

conn = simdb.simulate_db_connection()
tablename = simdb.tablename

query = f"select * from {tablename} where date > DATE(DATE(), '-24 month') AND sale_price is not NULL"
print(query)
# read in the data
housing_data = pd.read_sql_query(query, conn)

conn.close()
housing_data.loc[:, ["id", "date", "list_price", "bedrooms", "bathrooms", "sqft_living", "sqft_lot"]]
select * from house_listings where date > DATE(DATE(), '-24 month') AND sale_price is not NULL
iddatelist_pricebedroomsbathroomssqft_livingsqft_lot
071293005202023-07-31221900.031.0011805650
164141001922023-09-26538000.032.2525707242
256315004002023-12-13180000.021.0077010000
324872008752023-09-26604000.043.0019605000
419544005102023-12-06510000.032.0016808080
........................
205182630000182023-03-08360000.032.5015301131
2051966000601202023-12-11400000.042.5023105813
2052015233001412023-04-10402101.020.7510201350
205212913101002023-11-03400000.032.5016002388
2052215233001572023-08-02325000.020.7510201076

20523 rows × 7 columns

Data transformations

To improve relative error performance, we will predict on log10 of the sale price.

Predict on log10 price to try to improve relative error performance

housing_data['logprice'] = np.log10(housing_data.sale_price)

From the data, we will create the following features to evaluate:

  • house_age: How old the house is.
  • renovated: Whether the house has been renovated or not.
  • yrs_since_reno: If the house has been renovated, how long has it been.
import datetime

thisyear = datetime.datetime.now().year

housing_data['house_age'] = thisyear - housing_data['yr_built']
housing_data['renovated'] =  np.where((housing_data['yr_renovated'] > 0), 1, 0) 
housing_data['yrs_since_reno'] =  np.where(housing_data['renovated'], housing_data['yr_renovated'] - housing_data['yr_built'], 0)

housing_data.loc[:, ['yr_built', 'yr_renovated', 'house_age', 'renovated', 'yrs_since_reno']]
yr_builtyr_renovatedhouse_agerenovatedyrs_since_reno
0195506900
11951199173140
2193309100
3196505900
4198703700
..................
20518200901500
20519201401000
20520200901500
20521200402000
20522200801600

20523 rows × 5 columns

Now we pick variables and split training data into training and holdout (test).

vars = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view',
'condition', 'grade', 'sqft_above', 'sqft_basement', 'lat', 'long', 'sqft_living15', 'sqft_lot15', 'house_age', 'renovated', 'yrs_since_reno']

outcome = 'logprice'

runif = np.random.default_rng(2206222).uniform(0, 1, housing_data.shape[0])
gp = np.where(runif < 0.2, 'test', 'training')

hd_train = housing_data.loc[gp=='training', :].reset_index(drop=True, inplace=False)
hd_test = housing_data.loc[gp=='test', :].reset_index(drop=True, inplace=False)

# split the training into training and val for xgboost
runif = np.random.default_rng(123).uniform(0, 1, hd_train.shape[0])
xgb_gp = np.where(runif < 0.2, 'val', 'train')
# for xgboost, further split into train and val
train_features = np.array(hd_train.loc[xgb_gp=='train', vars])
train_labels = np.array(hd_train.loc[xgb_gp=='train', outcome])

val_features = np.array(hd_train.loc[xgb_gp=='val', vars])
val_labels = np.array(hd_train.loc[xgb_gp=='val', outcome])

Postprocessing

Since we are fitting a model to predict log10 price, we need to convert predictions back into price units. We also want to round to the nearest dollar.

def postprocess(log10price):
    return np.rint(np.power(10, log10price))

Model testing

For the purposes of this demo, let’s say that we require a mean absolute percent error (MAPE) of 15% or less, and the we want to try a few models to decide which model we want to use.

One could also hyperparameter tune at this stage; for brevity, we’ll omit that in this demo.

XGBoost

First we will test out using a XGBoost model.


xgb_model = xgb.XGBRegressor(
    objective = 'reg:squarederror', 
    max_depth=5, 
    base_score = np.mean(hd_train[outcome])
    )

xgb_model.fit( 
    train_features,
    train_labels,
    eval_set=[(train_features, train_labels), (val_features, val_labels)],
    verbose=False,
    early_stopping_rounds=35
)
XGBRegressor(base_score=5.666446833601829, booster=None, callbacks=None,
             colsample_bylevel=None, colsample_bynode=None,
             colsample_bytree=None, early_stopping_rounds=None,
             enable_categorical=False, eval_metric=None, feature_types=None,
             gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
             interaction_constraints=None, learning_rate=None, max_bin=None,
             max_cat_threshold=None, max_cat_to_onehot=None,
             max_delta_step=None, max_depth=5, max_leaves=None,
             min_child_weight=None, missing=nan, monotone_constraints=None,
             n_estimators=100, n_jobs=None, num_parallel_tree=None,
             predictor=None, random_state=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
XGBRegressor(base_score=5.666446833601829, booster=None, callbacks=None,
         colsample_bylevel=None, colsample_bynode=None,
         colsample_bytree=None, early_stopping_rounds=None,
         enable_categorical=False, eval_metric=None, feature_types=None,
         gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
         interaction_constraints=None, learning_rate=None, max_bin=None,
         max_cat_threshold=None, max_cat_to_onehot=None,
         max_delta_step=None, max_depth=5, max_leaves=None,
         min_child_weight=None, missing=nan, monotone_constraints=None,
         n_estimators=100, n_jobs=None, num_parallel_tree=None,
         predictor=None, random_state=None, ...)</pre>
print(xgb_model.best_score)
print(xgb_model.best_iteration)
print(xgb_model.best_ntree_limit)
0.07793614689092423
99
100

XGBoost Evaluate on holdout

With the sample model created, we will test it against the holdout data. Note that we are calling the postprocess function on the data.

test_features = np.array(hd_test.loc[:, vars])
test_labels = np.array(hd_test.loc[:, outcome])

pframe = pd.DataFrame({
    'pred' : postprocess(xgb_model.predict(test_features)),
    'actual' : postprocess(test_labels)
})

ax = seaborn.scatterplot(
    data=pframe,
    x='pred',
    y='actual',
    alpha=0.2
)
matplotlib.pyplot.plot(pframe.pred, pframe.pred, color='DarkGreen')
matplotlib.pyplot.title("test")
plt.show()
pframe['se'] = (pframe.pred - pframe.actual)**2

pframe['pct_err'] = 100*np.abs(pframe.pred - pframe.actual)/pframe.actual
pframe.describe()
predactualsepct_err
count4.094000e+034.094000e+034.094000e+034094.000000
mean5.340824e+055.396937e+051.657722e+1012.857674
std3.413714e+053.761666e+051.276017e+1113.512028
min1.216140e+058.200000e+041.000000e+000.000500
25%3.167628e+053.200000e+053.245312e+084.252492
50%4.568700e+054.500000e+051.602001e+099.101485
75%6.310372e+056.355250e+056.575385e+0917.041227
max5.126706e+067.700000e+066.637466e+12252.097895
rmse = np.sqrt(np.mean(pframe.se))
mape = np.mean(pframe.pct_err)

print(f'rmse = {rmse}, mape = {mape}')
rmse = 128752.54982046234, mape = 12.857674005250548

Random Forest

The next model to test is Random Forest.

model_rf = sklearn.ensemble.RandomForestRegressor(n_estimators=100, max_depth=5, n_jobs=2, max_samples=0.8)

train_features = np.array(hd_train.loc[:, vars])
train_labels = np.array(hd_train.loc[:, outcome])

model_rf.fit(train_features, train_labels)
RandomForestRegressor(max_depth=5, max_samples=0.8, n_jobs=2)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
RandomForestRegressor(max_depth=5, max_samples=0.8, n_jobs=2)

Random Forest Evaluate on holdout

With the Random Forest sample model created, now we can test it against the holdout data.

pframe = pd.DataFrame({
    'pred' : postprocess(model_rf.predict(test_features)),
    'actual' : postprocess(test_labels)
})

ax = seaborn.scatterplot(
    data=pframe,
    x='pred',
    y='actual',
    alpha=0.2
)
matplotlib.pyplot.plot(pframe.pred, pframe.pred, color='DarkGreen')
matplotlib.pyplot.title("random forest")
plt.show()
pframe['se'] = (pframe.pred - pframe.actual)**2

pframe['pct_err'] = 100*np.abs(pframe.pred - pframe.actual)/pframe.actual
pframe.describe()
predactualsepct_err
count4.094000e+034.094000e+034.094000e+034094.000000
mean5.193927e+055.396937e+053.855718e+1018.158892
std2.787917e+053.761666e+054.146327e+1117.546377
min2.035980e+058.200000e+044.000000e+000.000354
25%3.296550e+053.200000e+056.581425e+086.114513
50%4.687280e+054.500000e+053.300043e+0913.139936
75%5.871848e+056.355250e+051.384624e+1024.662608
max2.817928e+067.700000e+062.383463e+13177.850488
rmse = np.sqrt(np.mean(pframe.se))
mape = np.mean(pframe.pct_err)

print(f'rmse = {rmse}, mape = {mape}')
rmse = 196359.8291940774, mape = 18.158891829018927

Final Decision

At this stage, we decide to go with the xgboost model, with the variables/settings above.

With this stage complete, we can move on to Stage 2: Training Process Automation Setup.