Wallaroo SDK Upload Tutorials: Hugging Face

How to upload different Hugging Face models to Wallaroo.

The following tutorials cover how to upload sample Hugging Face models. The complete list of supported Hugging Face pipelines are as follows.

ParameterDescription
Web Sitehttps://huggingface.co/models
Supported Libraries
  • transformers==4.34.1
  • diffusers==0.14.0
  • accelerate==0.23.0
  • torchvision==0.14.1
  • torch==2.0.0
FrameworksThe following Hugging Face pipelines are supported by Wallaroo.
  • Framework.HUGGING_FACE_FEATURE_EXTRACTION aka hugging-face-feature-extraction
  • Framework.HUGGING_FACE_IMAGE_CLASSIFICATION aka hugging-face-image-classification
  • Framework.HUGGING_FACE_IMAGE_SEGMENTATION aka hugging-face-image-segmentation
  • Framework.HUGGING_FACE_IMAGE_TO_TEXT aka hugging-face-image-to-text
  • Framework.HUGGING_FACE_OBJECT_DETECTION aka hugging-face-object-detection
  • Framework.HUGGING_FACE_QUESTION_ANSWERING aka hugging-face-question-answering
  • Framework.HUGGING_FACE_STABLE_DIFFUSION_TEXT_2_IMG aka hugging-face-stable-diffusion-text-2-img
  • Framework.HUGGING_FACE_SUMMARIZATION aka hugging-face-summarization
  • Framework.HUGGING_FACE_TEXT_CLASSIFICATION aka hugging-face-text-classification
  • Framework.HUGGING_FACE_TRANSLATION aka hugging-face-translation
  • Framework.HUGGING_FACE_ZERO_SHOT_CLASSIFICATION aka hugging-face-zero-shot-classification
  • Framework.HUGGING_FACE_ZERO_SHOT_IMAGE_CLASSIFICATION aka hugging-face-zero-shot-image-classification
  • Framework.HUGGING_FACE_ZERO_SHOT_OBJECT_DETECTION aka hugging-face-zero-shot-object-detection
  • Framework.HUGGING_FACE_SENTIMENT_ANALYSIS aka hugging-face-sentiment-analysis
  • Framework.HUGGING_FACE_TEXT_GENERATION aka hugging-face-text-generation
  • Framework.HUGGING_FACE_AUTOMATIC_SPEECH_RECOGNITION aka hugging-face-automatic-speech-recognition

During the model upload process, the Wallaroo instance will attempt to convert the model to a Native Wallaroo Runtime. If unsuccessful, a Wallaroo Containerized Runtime for the model is generated instead. See the model deployment section for details on how to configure pipeline resources based on the model’s runtime.

Hugging Face Schemas

Input and output schemas for each Hugging Face pipeline are defined below. Note that adding additional inputs not specified below will raise errors, except for the following:

  • Framework.HUGGING_FACE_IMAGE_TO_TEXT
  • Framework.HUGGING_FACE_TEXT_CLASSIFICATION
  • Framework.HUGGING_FACE_SUMMARIZATION
  • Framework.HUGGING_FACE_TRANSLATION

Additional inputs added to these Hugging Face pipelines will be added as key/pair value arguments to the model’s generate method. If the argument is not required, then the model will default to the values coded in the original Hugging Face model’s source code.

See the Hugging Face Pipeline documentation for more details on each pipeline and framework.

Wallaroo FrameworkReference
Framework.HUGGING_FACE_FEATURE_EXTRACTION

Schemas:

input_schema = pa.schema([ pa.field('inputs', pa.string()) ]) output_schema = pa.schema([ pa.field('output', pa.list_( pa.list_( pa.float64(), list_size=128 ), )) ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_IMAGE_CLASSIFICATION

Schemas:

input_schema = pa.schema([ pa.field('inputs', pa.list_( pa.list_( pa.list_( pa.int64(), list_size=3 ), list_size=100 ), list_size=100 )), pa.field('top_k', pa.int64()), ]) output_schema = pa.schema([ pa.field('score', pa.list_(pa.float64(), list_size=2)), pa.field('label', pa.list_(pa.string(), list_size=2)), ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_IMAGE_SEGMENTATION

Schemas:

input_schema = pa.schema([ pa.field('inputs', pa.list_( pa.list_( pa.list_( pa.int64(), list_size=3 ), list_size=100 ), list_size=100 )), pa.field('threshold', pa.float64()), pa.field('mask_threshold', pa.float64()), pa.field('overlap_mask_area_threshold', pa.float64()), ]) output_schema = pa.schema([ pa.field('score', pa.list_(pa.float64())), pa.field('label', pa.list_(pa.string())), pa.field('mask', pa.list_( pa.list_( pa.list_( pa.int64(), list_size=100 ), list_size=100 ), )), ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_IMAGE_TO_TEXT

Any parameter that is not part of the required inputs list will be forwarded to the model as a key/pair value to the underlying models generate method. If the additional input is not supported by the model, an error will be returned.

Schemas:

input_schema = pa.schema([ pa.field('inputs', pa.list_( #required pa.list_( pa.list_( pa.int64(), list_size=3 ), list_size=100 ), list_size=100 )), # pa.field('max_new_tokens', pa.int64()), # optional ]) output_schema = pa.schema([ pa.field('generated_text', pa.list_(pa.string())), ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_OBJECT_DETECTION

Schemas:

input_schema = pa.schema([ pa.field('inputs', pa.list_( pa.list_( pa.list_( pa.int64(), list_size=3 ), list_size=100 ), list_size=100 )), pa.field('threshold', pa.float64()), ]) output_schema = pa.schema([ pa.field('score', pa.list_(pa.float64())), pa.field('label', pa.list_(pa.string())), pa.field('box', pa.list_( # dynamic output, i.e. dynamic number of boxes per input image, each sublist contains the 4 box coordinates pa.list_( pa.int64(), list_size=4 ), ), ), ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_QUESTION_ANSWERING

Schemas:

input_schema = pa.schema([ pa.field('question', pa.string()), pa.field('context', pa.string()), pa.field('top_k', pa.int64()), pa.field('doc_stride', pa.int64()), pa.field('max_answer_len', pa.int64()), pa.field('max_seq_len', pa.int64()), pa.field('max_question_len', pa.int64()), pa.field('handle_impossible_answer', pa.bool_()), pa.field('align_to_words', pa.bool_()), ]) output_schema = pa.schema([ pa.field('score', pa.float64()), pa.field('start', pa.int64()), pa.field('end', pa.int64()), pa.field('answer', pa.string()), ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_STABLE_DIFFUSION_TEXT_2_IMG

Schemas:

input_schema = pa.schema([ pa.field('prompt', pa.string()), pa.field('height', pa.int64()), pa.field('width', pa.int64()), pa.field('num_inference_steps', pa.int64()), # optional pa.field('guidance_scale', pa.float64()), # optional pa.field('negative_prompt', pa.string()), # optional pa.field('num_images_per_prompt', pa.string()), # optional pa.field('eta', pa.float64()) # optional ]) output_schema = pa.schema([ pa.field('images', pa.list_( pa.list_( pa.list_( pa.int64(), list_size=3 ), list_size=128 ), list_size=128 )), ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_SUMMARIZATION

Any parameter that is not part of the required inputs list will be forwarded to the model as a key/pair value to the underlying models generate method. If the additional input is not supported by the model, an error will be returned.

Schemas:

input_schema = pa.schema([ pa.field('inputs', pa.string()), pa.field('return_text', pa.bool_()), pa.field('return_tensors', pa.bool_()), pa.field('clean_up_tokenization_spaces', pa.bool_()), # pa.field('extra_field', pa.int64()), # every extra field you specify will be forwarded as a key/value pair ]) output_schema = pa.schema([ pa.field('summary_text', pa.string()), ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_TEXT_CLASSIFICATION

Schemas

input_schema = pa.schema([ pa.field('inputs', pa.string()), pa.field('top_k', pa.int64()), pa.field('function_to_apply', pa.string()), ]) output_schema = pa.schema([ pa.field('label', pa.list_(pa.string(), list_size=2)), # list with a number of items same as top_k, list_size can be skipped but may lead in worse performance pa.field('score', pa.list_(pa.float64(), list_size=2)), # list with a number of items same as top_k, list_size can be skipped but may lead in worse performance ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_TRANSLATION

Any parameter that is not part of the required inputs list will be forwarded to the model as a key/pair value to the underlying models generate method. If the additional input is not supported by the model, an error will be returned.

Schemas:

input_schema = pa.schema([ pa.field('inputs', pa.string()), # required pa.field('return_tensors', pa.bool_()), # optional pa.field('return_text', pa.bool_()), # optional pa.field('clean_up_tokenization_spaces', pa.bool_()), # optional pa.field('src_lang', pa.string()), # optional pa.field('tgt_lang', pa.string()), # optional # pa.field('extra_field', pa.int64()), # every extra field you specify will be forwarded as a key/value pair ]) output_schema = pa.schema([ pa.field('translation_text', pa.string()), ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_ZERO_SHOT_CLASSIFICATION

Schemas:

input_schema = pa.schema([ pa.field('inputs', pa.string()), # required pa.field('candidate_labels', pa.list_(pa.string(), list_size=2)), # required pa.field('hypothesis_template', pa.string()), # optional pa.field('multi_label', pa.bool_()), # optional ]) output_schema = pa.schema([ pa.field('sequence', pa.string()), pa.field('scores', pa.list_(pa.float64(), list_size=2)), # same as number of candidate labels, list_size can be skipped by may result in slightly worse performance pa.field('labels', pa.list_(pa.string(), list_size=2)), # same as number of candidate labels, list_size can be skipped by may result in slightly worse performance ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_ZERO_SHOT_IMAGE_CLASSIFICATION

Schemas:

input_schema = pa.schema([ pa.field('inputs', # required pa.list_( pa.list_( pa.list_( pa.int64(), list_size=3 ), list_size=100 ), list_size=100 )), pa.field('candidate_labels', pa.list_(pa.string(), list_size=2)), # required pa.field('hypothesis_template', pa.string()), # optional ]) output_schema = pa.schema([ pa.field('score', pa.list_(pa.float64(), list_size=2)), # same as number of candidate labels pa.field('label', pa.list_(pa.string(), list_size=2)), # same as number of candidate labels ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_ZERO_SHOT_OBJECT_DETECTION

Schemas:

input_schema = pa.schema([ pa.field('images', pa.list_( pa.list_( pa.list_( pa.int64(), list_size=3 ), list_size=640 ), list_size=480 )), pa.field('candidate_labels', pa.list_(pa.string(), list_size=3)), pa.field('threshold', pa.float64()), # pa.field('top_k', pa.int64()), # we want the model to return exactly the number of predictions, we shouldn't specify this ]) output_schema = pa.schema([ pa.field('score', pa.list_(pa.float64())), # variable output, depending on detected objects pa.field('label', pa.list_(pa.string())), # variable output, depending on detected objects pa.field('box', pa.list_( # dynamic output, i.e. dynamic number of boxes per input image, each sublist contains the 4 box coordinates pa.list_( pa.int64(), list_size=4 ), ), ), ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_SENTIMENT_ANALYSISHugging Face Sentiment Analysis
Wallaroo FrameworkReference
Framework.HUGGING_FACE_TEXT_GENERATION

Any parameter that is not part of the required inputs list will be forwarded to the model as a key/pair value to the underlying models generate method. If the additional input is not supported by the model, an error will be returned.

input_schema = pa.schema([ pa.field('inputs', pa.string()), pa.field('return_tensors', pa.bool_()), # optional pa.field('return_text', pa.bool_()), # optional pa.field('return_full_text', pa.bool_()), # optional pa.field('clean_up_tokenization_spaces', pa.bool_()), # optional pa.field('prefix', pa.string()), # optional pa.field('handle_long_generation', pa.string()), # optional # pa.field('extra_field', pa.int64()), # every extra field you specify will be forwarded as a key/value pair ]) output_schema = pa.schema([ pa.field('generated_text', pa.list_(pa.string(), list_size=1)) ])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_AUTOMATIC_SPEECH_RECOGNITION

Sample input and output schema.

input_schema = pa.schema([ pa.field('inputs', pa.list_(pa.float32())), # required: the audio stored in numpy arrays of shape (num_samples,) and data type `float32` pa.field('return_timestamps', pa.string()) # optional: return start & end times for each predicted chunk ]) output_schema = pa.schema([ pa.field('text', pa.string()), # required: the output text corresponding to the audio input pa.field('chunks', pa.list_(pa.struct([('text', pa.string()), ('timestamp', pa.list_(pa.float32()))]))), # required (if `return_timestamps` is set), start & end times for each predicted chunk ])

Wallaroo API Upload Tutorial: Hugging Face Zero Shot Classification

How to upload a Hugging Face Zero Shot Classification model to Wallaroo via the MLOps API.

Wallaroo SDK Upload Tutorial: Hugging Face Zero Shot Classification

How to upload a Hugging Face Zero Shot Classification model to Wallaroo via the Wallaroo SDK.