Wallaroo SDK Inferencing with Pipeline Inference URL Tutorial

How to use the Wallaroo SDK for inferences via the SDK and API with the Pipeline Inference URL.

This tutorial and the assets can be downloaded as part of the Wallaroo Tutorials repository.

Wallaroo SDK Inference Tutorial

Wallaroo provides the ability to perform inferences through deployed pipelines via the Wallaroo SDK and the Wallaroo MLOps API. This tutorial demonstrates performing inferences using the Wallaroo SDK.

This tutorial provides the following:

  • ccfraud.onnx: A pre-trained credit card fraud detection model.
  • data/cc_data_1k.arrow, data/cc_data_10k.arrow: Sample testing data in Apache Arrow format with 1,000 and 10,000 records respectively.
  • wallaroo-model-endpoints-sdk.py: A code-only version of this tutorial as a Python script.

This tutorial and sample data comes from the Machine Learning Group’s demonstration on Credit Card Fraud detection.

Prerequisites

The following is required for this tutorial:

Tutorial Goals

This demonstration provides a quick tutorial on performing inferences using the Wallaroo SDK using the Pipeline infer and infer_from_file methods. This following steps will be performed:

  • Connect to a Wallaroo instance using environmental variables. This bypasses the browser link confirmation for a seamless login. For more information, see the Wallaroo SDK Essentials Guide: Client Connection.
  • Create a workspace for our models and pipelines.
  • Upload the ccfraud model.
  • Create a pipeline and add the ccfraud model as a pipeline step.
  • Run a sample inference through SDK Pipeline infer method.
  • Run a batch inference through SDK Pipeline infer_from_file method.
  • Run a DataFrame and Arrow based inference through the pipeline Inference URL.

Open a Connection to Wallaroo

The first step is to connect to Wallaroo through the Wallaroo client.

import wallaroo
from wallaroo.object import EntityNotFoundError
import pandas as pd
import os
import pyarrow as pa

# used to display dataframe information without truncating
from IPython.display import display
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)

import requests
wl = wallaroo.Client()

Create the Workspace

We will create a workspace to work in and call it the sdkinferenceexampleworkspace, then set it as current workspace environment. We’ll also create our pipeline in advance as sdkinferenceexamplepipeline.

The model to be uploaded and used for inference will be labeled as ccfraud.

workspace_name = f'sdkinferenceexampleworkspace'
pipeline_name = f'sdkinferenceexamplepipeline'
model_name = f'ccfraud'
model_file_name = './ccfraud.onnx'
workspace = wl.get_workspace(name=workspace_name, create_if_not_exist=True)

wl.set_current_workspace(workspace)
{'name': 'sdkinferenceexampleworkspace', 'id': 162, 'archived': False, 'created_by': 'ff775520-72b5-4f8f-a755-f3cd28b8462f', 'created_at': '2024-07-22T22:05:24.606054+00:00', 'models': [], 'pipelines': []}

Build Pipeline

In a production environment, the pipeline would already be set up with the model and pipeline steps. We would then select it and use it to perform our inferences.

For this example we will create the pipeline and add the ccfraud model as a pipeline step and deploy it. Deploying a pipeline allocates resources from the Kubernetes cluster hosting the Wallaroo instance and prepares it for performing inferences.

If this process was already completed, it can be commented out and skipped for the next step Select Pipeline.

Then we will list the pipelines and select the one we will be using for the inference demonstrations.

# Create or select the current pipeline

ccfraudpipeline = wl.build_pipeline(pipeline_name)
ccfraudpipeline.clear()

# Add ccfraud model as the pipeline step

ccfraud_model = (wl.upload_model(model_name, 
                                 model_file_name, 
                                 framework=wallaroo.framework.Framework.ONNX)
                                 .configure(tensor_fields=["tensor"])
                )

ccfraudpipeline.add_model_step(ccfraud_model).deploy()
Waiting for deployment - this will take up to 45s ............ ok
namesdkinferenceexamplepipeline
created2024-07-22 22:05:25.012540+00:00
last_updated2024-07-22 22:09:20.333420+00:00
deployedTrue
workspace_id162
workspace_namesdkinferenceexampleworkspace
archx86
accelnone
tags
versionsf1a270ed-867c-407d-9b15-c0584db7c463, 786654a5-41fc-41bb-9d10-6b7bf61627be, 27fd3d21-a235-48b5-a57f-547d27ba3ec6, e8cc19a6-f589-4907-8ec2-4433a415ac0a
stepsccfraud
publishedFalse

Select Pipeline

This step assumes that the pipeline is prepared with ccfraud as the current step. The method get_pipeline retrieves the pipeline in the workspace that matches the pipeline name.

# Set the `pipeline` variable to our sample pipeline.

pipeline = wl.get_pipeline(pipeline_name)
display(pipeline)
namesdkinferenceexamplepipeline
created2024-07-22 22:05:25.012540+00:00
last_updated2024-07-22 22:09:20.333420+00:00
deployedTrue
workspace_id162
workspace_namesdkinferenceexampleworkspace
archx86
accelnone
tags
versionsf1a270ed-867c-407d-9b15-c0584db7c463, 786654a5-41fc-41bb-9d10-6b7bf61627be, 27fd3d21-a235-48b5-a57f-547d27ba3ec6, e8cc19a6-f589-4907-8ec2-4433a415ac0a
stepsccfraud
publishedFalse

Inferences via SDK

Once a pipeline has been deployed, an inference can be run. This will submit data to the pipeline, where it is processed through each of the pipeline’s steps with the output of the previous step providing the input for the next step. The final step will then output the result of all of the pipeline’s steps.

  • Inputs are either sent one of the following:
    • pandas.DataFrame. The return value will be a pandas.DataFrame.
    • Apache Arrow. The return value will be an Apache Arrow table.
    • Custom JSON. The return value will be a Wallaroo InferenceResult object.

Inferences are performed through the Wallaroo SDK via the Pipeline infer and infer_from_file methods.

infer Method

Now that the pipeline is deployed we’ll perform an inference using the Pipeline infer method, and submit a pandas DataFrame as our input data. This will return a pandas DataFrame as the inference output.

For more information, see the Wallaroo SDK Essentials Guide: Inferencing: Run Inference through Local Variable.

smoke_test = pd.DataFrame.from_records([
    {
        "tensor":[
            1.0678324729,
            0.2177810266,
            -1.7115145262,
            0.682285721,
            1.0138553067,
            -0.4335000013,
            0.7395859437,
            -0.2882839595,
            -0.447262688,
            0.5146124988,
            0.3791316964,
            0.5190619748,
            -0.4904593222,
            1.1656456469,
            -0.9776307444,
            -0.6322198963,
            -0.6891477694,
            0.1783317857,
            0.1397992467,
            -0.3554220649,
            0.4394217877,
            1.4588397512,
            -0.3886829615,
            0.4353492889,
            1.7420053483,
            -0.4434654615,
            -0.1515747891,
            -0.2668451725,
            -1.4549617756
        ]
    }
])
result = pipeline.infer(smoke_test)
display(result)
timein.tensorout.dense_1anomaly.count
02024-07-22 22:10:27.913[1.0678324729, 0.2177810266, -1.7115145262, 0.682285721, 1.0138553067, -0.4335000013, 0.7395859437, -0.2882839595, -0.447262688, 0.5146124988, 0.3791316964, 0.5190619748, -0.4904593222, 1.1656456469, -0.9776307444, -0.6322198963, -0.6891477694, 0.1783317857, 0.1397992467, -0.3554220649, 0.4394217877, 1.4588397512, -0.3886829615, 0.4353492889, 1.7420053483, -0.4434654615, -0.1515747891, -0.2668451725, -1.4549617756][0.0014974177]0

infer_from_file Method

This example uses the Pipeline method infer_from_file to submit 10,000 records as a batch using an Apache Arrow table. The method will return an Apache Arrow table. For more information, see the Wallaroo SDK Essentials Guide: Inferencing: Run Inference From A File

The results will be converted into a pandas.DataFrame. The results will be filtered by transactions likely to be credit card fraud.

result = pipeline.infer_from_file('./data/cc_data_10k.arrow')

display(result)
pyarrow.Table
time: timestamp[ms]
in.tensor: list<item: float>
  child 0, item: float
out.dense_1: list<inner: float not null> not null
  child 0, inner: float not null
anomaly.count: uint32 not null
----
time: [[2024-07-22 22:10:29.463,2024-07-22 22:10:29.463,2024-07-22 22:10:29.463,2024-07-22 22:10:29.463,2024-07-22 22:10:29.463,...,2024-07-22 22:10:29.463,2024-07-22 22:10:29.463,2024-07-22 22:10:29.463,2024-07-22 22:10:29.463,2024-07-22 22:10:29.463]]
in.tensor: [[[-1.0603298,2.3544967,-3.5638788,5.138735,-1.2308457,...,0.038412016,1.0993439,1.2603409,-0.14662448,-1.4463212],[-1.0603298,2.3544967,-3.5638788,5.138735,-1.2308457,...,0.038412016,1.0993439,1.2603409,-0.14662448,-1.4463212],...,[-2.1694233,-3.1647356,1.2038506,-0.2649221,0.0899006,...,1.8174038,-0.19327773,0.94089776,0.825025,1.6242892],[-0.12405868,0.73698884,1.0311689,0.59917533,0.11831961,...,-0.36567155,-0.87004745,0.41288367,0.49470216,-0.6710689]]]
out.dense_1: [[[0.99300325],[0.99300325],...,[0.00024175644],[0.0010648072]]]
anomaly.count: [[0,0,0,0,0,...,0,0,0,0,0]]
# use pyarrow to convert results to a pandas DataFrame and display only the results with > 0.75

list = [0.75]

outputs =  result.to_pandas()
# display(outputs)
filter = [elt[0] > 0.75 for elt in outputs['out.dense_1']]
outputs = outputs.loc[filter]
display(outputs)
timein.tensorout.dense_1anomaly.count
02024-07-22 22:10:29.463[-1.0603298, 2.3544967, -3.5638788, 5.138735, -1.2308457, -0.76878244, -3.5881228, 1.8880838, -3.2789674, -3.9563255, 4.099344, -5.653918, -0.8775733, -9.131571, -0.6093538, -3.7480276, -5.0309124, -0.8748149, 1.9870535, 0.7005486, 0.9204423, -0.10414918, 0.32295644, -0.74181414, 0.038412016, 1.0993439, 1.2603409, -0.14662448, -1.4463212][0.99300325]0
12024-07-22 22:10:29.463[-1.0603298, 2.3544967, -3.5638788, 5.138735, -1.2308457, -0.76878244, -3.5881228, 1.8880838, -3.2789674, -3.9563255, 4.099344, -5.653918, -0.8775733, -9.131571, -0.6093538, -3.7480276, -5.0309124, -0.8748149, 1.9870535, 0.7005486, 0.9204423, -0.10414918, 0.32295644, -0.74181414, 0.038412016, 1.0993439, 1.2603409, -0.14662448, -1.4463212][0.99300325]0
22024-07-22 22:10:29.463[-1.0603298, 2.3544967, -3.5638788, 5.138735, -1.2308457, -0.76878244, -3.5881228, 1.8880838, -3.2789674, -3.9563255, 4.099344, -5.653918, -0.8775733, -9.131571, -0.6093538, -3.7480276, -5.0309124, -0.8748149, 1.9870535, 0.7005486, 0.9204423, -0.10414918, 0.32295644, -0.74181414, 0.038412016, 1.0993439, 1.2603409, -0.14662448, -1.4463212][0.99300325]0
32024-07-22 22:10:29.463[-1.0603298, 2.3544967, -3.5638788, 5.138735, -1.2308457, -0.76878244, -3.5881228, 1.8880838, -3.2789674, -3.9563255, 4.099344, -5.653918, -0.8775733, -9.131571, -0.6093538, -3.7480276, -5.0309124, -0.8748149, 1.9870535, 0.7005486, 0.9204423, -0.10414918, 0.32295644, -0.74181414, 0.038412016, 1.0993439, 1.2603409, -0.14662448, -1.4463212][0.99300325]0
1612024-07-22 22:10:29.463[-9.716793, 9.174981, -14.450761, 8.653825, -11.039951, 0.6602411, -22.825525, -9.919395, -8.064324, -16.737926, 4.852197, -12.563343, -1.0762653, -7.524591, -3.2938414, -9.62102, -15.6501045, -7.089741, 1.7687134, 5.044906, -11.365625, 4.5987034, 4.4777045, 0.31702697, -2.2731977, 0.07944675, -10.052058, -2.024108, -1.0611985][1.0]0
9412024-07-22 22:10:29.463[-0.50492376, 1.9348029, -3.4217603, 2.2165704, -0.6545315, -1.9004827, -1.6786858, 0.5380051, -2.7229102, -5.265194, 3.504164, -5.4661765, 0.68954825, -8.725291, 2.0267954, -5.4717045, -4.9123807, -1.6131229, 3.8021576, 1.3881834, 1.0676425, 0.28200775, -0.30759808, -0.48498034, 0.9507336, 1.5118006, 1.6385275, 1.072455, 0.7959132][0.9873102]0
14452024-07-22 22:10:29.463[-7.615594, 4.659706, -12.057331, 7.975307, -5.1068773, -1.6116138, -12.146941, -0.5952333, -6.4605103, -12.535655, 10.017626, -14.839381, 0.34900802, -14.953928, -0.3901092, -9.342014, -14.285043, -5.758632, 0.7512068, 1.4632998, -3.3777077, 0.9950705, -0.5855211, -1.6528498, 1.9089833, 1.6860862, 5.5044003, -3.703297, -1.4715525][1.0]0
20922024-07-22 22:10:29.463[-14.115489, 9.905631, -18.67885, 4.602589, -15.404288, -3.7169847, -15.887272, 15.616176, -3.2883947, -7.0224414, 4.086536, -5.7809114, 1.2251061, -5.4301147, -0.14021407, -6.0200763, -12.957546, -5.545689, 0.86074656, 2.2463796, 2.492611, -2.9649208, -2.265674, 0.27490455, 3.9263225, -0.43438172, 3.1642237, 1.2085277, 0.8223642][0.99999]0
22202024-07-22 22:10:29.463[-0.1098309, 2.5842443, -3.5887418, 4.63558, 1.1825614, -1.2139517, -0.7632139, 0.6071841, -3.7244265, -3.501917, 4.3637576, -4.612757, -0.44275254, -10.346612, 0.66243565, -0.33048683, 1.5961986, 2.5439718, 0.8787973, 0.7406088, 0.34268215, -0.68495077, -0.48357907, -1.9404846, -0.059520483, 1.1553137, 0.9918434, 0.7067319, -1.6016251][0.91080534]0
41352024-07-22 22:10:29.463[-0.547029, 2.2944348, -4.149202, 2.8648357, -0.31232587, -1.5427867, -2.1489344, 0.9471863, -2.663241, -4.2572775, 2.1116028, -6.2264414, -1.1307784, -6.9296007, 1.0049651, -5.876498, -5.6855297, -1.5800936, 3.567338, 0.5962099, 1.6361043, 1.8584082, -0.08202618, 0.46620172, -2.234368, -0.18116793, 1.744976, 2.1414309, -1.6081295][0.98877275]0
42362024-07-22 22:10:29.463[-3.135635, -1.483817, -3.0833669, 1.6626456, -0.59695035, -0.30199608, -3.316563, 1.869609, -1.8006078, -4.5662026, 2.8778172, -4.0887237, -0.43401834, -3.5816982, 0.45171788, -5.725131, -8.982029, -4.0279546, 0.89264476, 0.24721873, 1.8289508, 1.6895254, -2.5555577, -2.4714024, -0.4500012, 0.23333028, 2.2119386, -2.041805, 1.1568314][0.95601666]0
56582024-07-22 22:10:29.463[-5.4078765, 3.9039962, -8.98522, 5.128742, -7.373224, -2.946234, -11.033238, 5.914019, -5.669241, -12.041053, 6.950792, -12.488795, 1.2236942, -14.178565, 1.6514667, -12.47019, -22.350504, -8.928755, 4.54775, -0.11478994, 3.130207, -0.70128506, -0.40275285, 0.7511918, -0.1856308, 0.92282087, 0.146656, -1.3761806, 0.42997098][1.0]0
67682024-07-22 22:10:29.463[-16.900557, 11.7940855, -21.349983, 4.746453, -17.54182, -3.415758, -19.897173, 13.8569145, -3.570626, -7.388376, 3.0761156, -4.0583425, 1.2901028, -2.7997534, -0.4298746, -4.777225, -11.371295, -5.2725616, 0.0964799, 4.2148075, -0.8343371, -2.3663573, -1.6571938, 0.2110055, 4.438088, -0.49057993, 2.342008, 1.4479793, -1.4715525][0.9999745]0
67802024-07-22 22:10:29.463[-0.74893713, 1.3893062, -3.7477517, 2.4144504, -0.11061429, -1.0737498, -3.1504633, 1.2081385, -1.332872, -4.604276, 4.438548, -7.687688, 1.1683422, -5.3296027, -0.19838685, -5.294243, -5.4928794, -1.3254275, 4.387228, 0.68643385, 0.87228596, -0.1154091, -0.8364338, -0.61202216, 0.10518055, 2.2618086, 1.1435078, -0.32623357, -1.6081295][0.9852645]0
71332024-07-22 22:10:29.463[-7.5131927, 6.507386, -12.439463, 5.7453, -9.513038, -1.4236209, -17.402607, -3.0903268, -5.378041, -15.169325, 5.7585907, -13.448207, -0.45244268, -8.495097, -2.2323692, -11.429063, -19.578058, -8.367617, 1.8869618, 2.1813896, -4.799091, 2.4388566, 2.9503248, 0.6293566, -2.6906652, -2.1116931, -6.4196434, -1.4523355, -1.4715525][1.0]0
75662024-07-22 22:10:29.463[-2.1804514, 1.0243497, -4.3890443, 3.4924, -3.7609894, 0.023624033, -2.7677023, 1.1786921, -2.9450424, -6.8823, 6.1294384, -9.564066, -1.6273017, -10.940607, 0.3062539, -8.854589, -15.382658, -5.419305, 3.2210033, -0.7381137, 0.9632334, 0.6612066, 2.1337948, -0.90536207, 0.7498649, -0.019404415, 5.5950212, 0.26602694, 1.7534728][0.9999705]0
79112024-07-22 22:10:29.463[-1.594454, 1.8545462, -2.6311765, 2.759316, -2.6988854, -0.08155677, -3.8566258, -0.04912437, -1.9640644, -4.2058415, 3.391933, -6.471933, -0.9877536, -6.188904, 1.2249585, -8.652863, -11.170872, -6.134417, 2.5400054, -0.29327056, 3.591464, 0.3057127, -0.052313827, 0.06196331, -0.82863224, -0.2595842, 1.0207018, 0.019899422, 1.0935433][0.9980203]0
89212024-07-22 22:10:29.463[-0.21756083, 1.786712, -3.4240367, 2.7769134, -1.420116, -2.1018193, -3.4615245, 0.7367844, -2.3844852, -6.3140697, 4.382665, -8.348951, -1.6409378, -10.611383, 1.1813216, -6.251184, -10.577264, -3.5184007, 0.7997489, 0.97915924, 1.081642, -0.7852368, -0.4761941, -0.10635195, 2.066527, -0.4103488, 2.8288178, 1.9340333, -1.4715525][0.99950194]0
92442024-07-22 22:10:29.463[-3.314442, 2.4431305, -6.1724143, 3.6737356, -3.81542, -1.5950849, -4.8292923, 2.9850774, -4.22416, -7.5519834, 6.1932964, -8.59886, 0.25443414, -11.834097, -0.39583337, -6.015362, -13.532762, -4.226845, 1.1153877, 0.17989528, 1.3166595, -0.64433384, 0.2305495, -0.5776498, 0.7609739, 2.2197483, 4.01189, -1.2347667, 1.2847253][0.9999876]0
101762024-07-22 22:10:29.463[-5.0815525, 3.9294617, -8.4077635, 6.373701, -7.391173, -2.1574461, -10.345097, 5.5896044, -6.3736906, -11.330594, 6.618754, -12.93748, 1.1884484, -13.9628935, 1.0340953, -12.278127, -23.333889, -8.886669, 3.5720036, -0.3243157, 3.4229393, 0.493529, 0.08469851, 0.791218, 0.30968663, 0.6811129, 0.39306796, -1.5204874, 0.9061435][1.0]0

Inferences via HTTP POST

Each pipeline has its own Inference URL that allows HTTP/S POST submissions of inference requests. Full details are available from the Inferencing via the Wallaroo MLOps API.

This example will demonstrate performing inferences with a DataFrame input and an Apache Arrow input.

Request JWT Token

There are two ways to retrieve the JWT token used to authenticate to the Wallaroo MLOps API.

  • Wallaroo SDK. This method requires a Wallaroo based user.
  • API Clent Secret. This is the recommended method as it is user independent. It allows any valid user to make an inference request.

This tutorial will use the Wallaroo SDK method Wallaroo Client wl.auth.auth_header() method, extracting the Authentication header from the response.

Reference: MLOps API Retrieve Token Through Wallaroo SDK

headers = wl.auth.auth_header()
display(headers)
{'Authorization': 'Bearer eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJVLWZnXzZZcDc4Z1RxRWpsNTVUX2plc2k4c3VGTlZFdnNTQnY2WkF0MGVFIn0.eyJleHAiOjE3MjE2ODYyODYsImlhdCI6MTcyMTY4NjIyNiwiYXV0aF90aW1lIjoxNzIxNjgyODk3LCJqdGkiOiI3ZmZjYTA0OS1kZTkzLTRlYjgtYjE4MC05MDYwMzFjYWJiMzUiLCJpc3MiOiJodHRwczovL2F1dG9zY2FsZS11YXQtZ2NwLndhbGxhcm9vLmRldi9hdXRoL3JlYWxtcy9tYXN0ZXIiLCJhdWQiOlsibWFzdGVyLXJlYWxtIiwiYWNjb3VudCJdLCJzdWIiOiJmZjc3NTUyMC03MmI1LTRmOGYtYTc1NS1mM2NkMjhiODQ2MmYiLCJ0eXAiOiJCZWFyZXIiLCJhenAiOiJzZGstY2xpZW50Iiwic2Vzc2lvbl9zdGF0ZSI6IjcyMmJkNzg3LTFlOTktNDNhNC1iNTRkLWUwYTI0NDVmMTBjMCIsImFjciI6IjAiLCJyZWFsbV9hY2Nlc3MiOnsicm9sZXMiOlsiZGVmYXVsdC1yb2xlcy1tYXN0ZXIiLCJvZmZsaW5lX2FjY2VzcyIsInVtYV9hdXRob3JpemF0aW9uIl19LCJyZXNvdXJjZV9hY2Nlc3MiOnsibWFzdGVyLXJlYWxtIjp7InJvbGVzIjpbInZpZXctcmVhbG0iLCJ2aWV3LXVzZXJzIiwicXVlcnktZ3JvdXBzIiwicXVlcnktdXNlcnMiXX0sImFjY291bnQiOnsicm9sZXMiOlsibWFuYWdlLWFjY291bnQiLCJtYW5hZ2UtYWNjb3VudC1saW5rcyIsInZpZXctcHJvZmlsZSJdfX0sInNjb3BlIjoiZW1haWwgb3BlbmlkIHByb2ZpbGUiLCJzaWQiOiI3MjJiZDc4Ny0xZTk5LTQzYTQtYjU0ZC1lMGEyNDQ1ZjEwYzAiLCJlbWFpbF92ZXJpZmllZCI6ZmFsc2UsImh0dHBzOi8vaGFzdXJhLmlvL2p3dC9jbGFpbXMiOnsieC1oYXN1cmEtdXNlci1pZCI6ImZmNzc1NTIwLTcyYjUtNGY4Zi1hNzU1LWYzY2QyOGI4NDYyZiIsIngtaGFzdXJhLXVzZXItZW1haWwiOiJqb2huLmh1bW1lbEB3YWxsYXJvby5haSIsIngtaGFzdXJhLWRlZmF1bHQtcm9sZSI6InVzZXIiLCJ4LWhhc3VyYS1hbGxvd2VkLXJvbGVzIjpbInVzZXIiXSwieC1oYXN1cmEtdXNlci1ncm91cHMiOiJ7fSJ9LCJuYW1lIjoiSm9obiBIYW5zYXJpY2siLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJqb2huLmh1bW1lbEB3YWxsYXJvby5haSIsImdpdmVuX25hbWUiOiJKb2huIiwiZmFtaWx5X25hbWUiOiJIYW5zYXJpY2siLCJlbWFpbCI6ImpvaG4uaHVtbWVsQHdhbGxhcm9vLmFpIn0.NEZiIQ7f4C2vp8MMD4C6VJVnWD5dGFH-OVgHURTab8S_kFURBjs6iNWULbDGHnHpTYQsN-1n8bJOmRxWyTe4UIpVummRl2fjgsovGW9lAzFHk2bIw5SvwqUwe3xwT07b8zrG1n4m-7WOp8B3oIIlYcqMiqB2qAE43dNadD2oqDXXpiDM_cEoODw_0wEeoW2df2r2-qirckDzlrY4_whJZ8PMlRXgwlwEvrUbA5hRxEkXqge5KJArgF-JMdq0kdtekRx1i0mgdBqK5TSdTqtG2AoEgoJq1-lN3R-onwl0vr8IVGld1diPUFiSYAA7mgAMI9sqWNOp7zVmyY1khYkimQ'}

Retrieve the Pipeline Inference URL

The Pipeline Inference URL is retrieved via the Wallaroo SDK with the Pipeline ._deployment._url() method.

  • IMPORTANT NOTE: The _deployment._url() method will return an internal URL when using Python commands from within the Wallaroo instance - for example, the Wallaroo JupyterHub service. When connecting via an external connection, _deployment._url() returns an external URL.
deploy_url = pipeline._deployment._url()
print(deploy_url)
http://engine-lb.sdkinferenceexamplepipeline-97:29502/pipelines/sdkinferenceexamplepipeline

HTTP Inference with DataFrame Input

The following example performs a HTTP Inference request with a DataFrame input. The request will be made with first a Python requests method, then using curl.

# get authorization header
headers = wl.auth.auth_header()

## Inference through external URL using dataframe

# retrieve the json data to submit
data = pd.DataFrame.from_records([
    {
        "tensor":[
            1.0678324729,
            0.2177810266,
            -1.7115145262,
            0.682285721,
            1.0138553067,
            -0.4335000013,
            0.7395859437,
            -0.2882839595,
            -0.447262688,
            0.5146124988,
            0.3791316964,
            0.5190619748,
            -0.4904593222,
            1.1656456469,
            -0.9776307444,
            -0.6322198963,
            -0.6891477694,
            0.1783317857,
            0.1397992467,
            -0.3554220649,
            0.4394217877,
            1.4588397512,
            -0.3886829615,
            0.4353492889,
            1.7420053483,
            -0.4434654615,
            -0.1515747891,
            -0.2668451725,
            -1.4549617756
        ]
    }
])

# set the content type for pandas records
headers['Content-Type']= 'application/json; format=pandas-records'

# set accept as pandas-records
headers['Accept']='application/json; format=pandas-records'

# submit the request via POST, import as pandas DataFrame
response = pd.DataFrame.from_records(
                requests.post(
                    deploy_url, 
                    data=data.to_json(orient="records"), 
                    headers=headers)
                .json()
            )
display(response.loc[:,["time", "out"]])
timeout
01721686244105{'dense_1': [0.0014974177]}
!curl -X POST {deploy_url} -H "Authorization: {headers['Authorization']}" -H "Content-Type:{headers['Content-Type']}" -H "Accept:{headers['Accept']}" --data '{data.to_json(orient="records")}'
[{"time":1721686245906,"in":{"tensor":[1.0678324729,0.2177810266,-1.7115145262,0.682285721,1.0138553067,-0.4335000013,0.7395859437,-0.2882839595,-0.447262688,0.5146124988,0.3791316964,0.5190619748,-0.4904593222,1.1656456469,-0.9776307444,-0.6322198963,-0.6891477694,0.1783317857,0.1397992467,-0.3554220649,0.4394217877,1.4588397512,-0.3886829615,0.4353492889,1.7420053483,-0.4434654615,-0.1515747891,-0.2668451725,-1.4549617756]},"out":{"dense_1":[0.0014974177]},"anomaly":{"count":0},"metadata":{"last_model":"{\"model_name\":\"ccfraud\",\"model_sha\":\"bc85ce596945f876256f41515c7501c399fd97ebcb9ab3dd41bf03f8937b4507\"}","pipeline_version":"f1a270ed-867c-407d-9b15-c0584db7c463","elapsed":[55835,405277],"dropped":[],"partition":"engine-7bb66ff98f-n2kxp"}}]

HTTP Inference with Arrow Input

The following example performs a HTTP Inference request with an Apache Arrow input. The request will be made with first a Python requests method, then using curl.

Only the first 5 rows will be displayed for space purposes.

# get authorization header
headers = wl.auth.auth_header()

# Submit arrow file
dataFile="./data/cc_data_10k.arrow"

data = open(dataFile,'rb').read()

# set the content type for Arrow table
headers['Content-Type']= "application/vnd.apache.arrow.file"

# set accept as Apache Arrow
headers['Accept']="application/vnd.apache.arrow.file"

response = requests.post(
                    deploy_url, 
                    headers=headers, 
                    data=data, 
                    verify=True
                )

# Arrow table is retrieved 
with pa.ipc.open_file(response.content) as reader:
    arrow_table = reader.read_all()

# convert to Polars DataFrame and display the first 5 rows
display(arrow_table.to_pandas().head(5).loc[:,["time", "out"]])
timeout
01721686247328{'dense_1': [0.99300325]}
11721686247328{'dense_1': [0.99300325]}
21721686247328{'dense_1': [0.99300325]}
31721686247328{'dense_1': [0.99300325]}
41721686247328{'dense_1': [0.0010916889]}
!curl -X POST {deploy_url} -H "Authorization: {headers['Authorization']}" -H "Content-Type:{headers['Content-Type']}" -H "Accept:{headers['Accept']}" --data-binary @{dataFile} > curl_response.arrow
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 4552k  100 3389k  100 1162k   100M  34.4M --:--:-- --:--:-- --:--:--  134M

Undeploy Pipeline

When finished with our tests, we will undeploy the pipeline so we have the Kubernetes resources back for other tasks.

pipeline.undeploy()
Waiting for undeployment - this will take up to 45s ...................................... ok
namesdkinferenceexamplepipeline
created2024-07-22 22:05:25.012540+00:00
last_updated2024-07-22 22:09:20.333420+00:00
deployedFalse
workspace_id162
workspace_namesdkinferenceexampleworkspace
archx86
accelnone
tags
versionsf1a270ed-867c-407d-9b15-c0584db7c463, 786654a5-41fc-41bb-9d10-6b7bf61627be, 27fd3d21-a235-48b5-a57f-547d27ba3ec6, e8cc19a6-f589-4907-8ec2-4433a415ac0a
stepsccfraud
publishedFalse