whisper-large-v2 Demonstration with Wallaroo

The whisper-large-v2 Demonstration with Wallaroo deployment.

This tutorial can be downloaded as part of the Wallaroo Tutorials repository.

Whisper Demo

The following tutorial demonstrates deploying the openai/whisper-large-v2 on a Wallaroo pipeline and performing inferences on it using the BYOP feature.

Data Prepartions

For this example, the following Python libraries were used:

These can be installed with the following command:

pip install librosa datasets --user

For these libraries, a sample of audio files was retrieved and converted using the following code.

import librosa
from datasets import load_dataset

# load the sample dataset and retrieve the audio files
dataset = load_dataset("Narsil/asr_dummy")

# the following is used to play them
audio_1, sr_1 = librosa.load(dataset["test"][0]["file"])
audio_2, sr_2 = librosa.load(dataset["test"][1]["file"])

audio_files = [(audio_1, sr_1), (audio_2, sr_2)]

# convert the audio files to numpy values in a DataFrame
input_data = {
        "inputs": [audio_1, audio_2],
        "return_timestamps": ["word", "word"],
}
dataframe = pd.DataFrame(input_data)

# the following will provide a UI to play the audio file samples

def display_audio(audio: np.array, sr: int) -> None:
    IPython.display.display(Audio(data=audio, rate=sr))

for audio, sr in audio_files:
    display_audio(audio, sr)

The resulting pandas DataFrame can either be submitted directly to a deployed Wallaroo pipeline using wallaroo.pipeline.infer, or the DataFrame exported to a pandas Record file in pandas JSON format, and used for an inference request using wallaroo.pipeline.infer_from_file.

For this example, the audio files are pre-converted to a JSON pandas Record table file, and used for the inference result. This removes the requirements to add additional Python libraries to a virtual environment or Wallaroo JupyterHub service. The code above is provided as an example of converting the dataset audio into values for inference requests.

Tutorial Steps

Import Libraries

The first step is to import the libraries we’ll be using. These are included by default in the Wallaroo instance’s JupyterHub service or are installed with the Wallaroo SDK.

import json
import os

import wallaroo
from wallaroo.pipeline   import Pipeline
from wallaroo.deployment_config import DeploymentConfigBuilder
from wallaroo.framework import Framework

import pyarrow as pa
import numpy as np
import pandas as pd

# ignoring warnings for demonstration
import warnings
warnings.filterwarnings('ignore')

Open a Connection to Wallaroo

The next step is connect to Wallaroo through the Wallaroo client. The Python library is included in the Wallaroo install and available through the Jupyter Hub interface provided with your Wallaroo environment.

This is accomplished using the wallaroo.Client() command, which provides a URL to grant the SDK permission to your specific Wallaroo environment. When displayed, enter the URL into a browser and confirm permissions. Store the connection into a variable that can be referenced later.

If logging into the Wallaroo instance through the internal JupyterHub service, use wl = wallaroo.Client(). For more details on logging in through Wallaroo, see the Wallaroo SDK Essentials Guide: Client Connection.

For this tutorial, the request_timeout option is increased to allow the model conversion and pipeline deployment to proceed without any warning messages.

wl = wallaroo.Client(request_timeout=600)

Set Variables

We’ll set the name of our workspace, pipeline, models and files. Workspace names must be unique across the Wallaroo workspace. For this, we’ll add in a randomly generated 4 characters to the workspace name to prevent collisions with other users’ workspaces. If running this tutorial, we recommend hard coding the workspace name so it will function in the same workspace each time it’s run.

The names for our workspace, pipeline, model, and model files are set here to make updating this tutorial easier.

  • IMPORTANT NOTE: Workspace names must be unique across the Wallaroo instance. To verify unique names, the randomization code below is provided to allow the workspace name to be unique. If this is not required, set suffix to ''.
workspace_name = f'whisper-tiny-demo'
pipeline_name = 'whisper-hf-byop'
model_name = 'whisper-byop'
model_file_name = './models/model-auto-conversion_hugging-face_complex-pipelines_asr-whisper-tiny.zip'

Create Workspace and Pipeline

We will now create the Wallaroo workspace to store our model and set it as the current workspace. Future commands will default to this workspace for pipeline creation, model uploads, etc. We’ll create our Wallaroo pipeline that is used to deploy our Custom Model.

workspace = wl.get_workspace(name=workspace_name, create_if_not_exist=True)
wl.set_current_workspace(workspace)

pipeline = wl.build_pipeline(pipeline_name)

display(wl.get_current_workspace())
{'name': 'whisper-tiny-demo', 'id': 20, 'archived': False, 'created_by': 'fb2916bc-551e-4a76-88e8-0f7d7720a0f9', 'created_at': '2024-07-31T16:43:14.11736+00:00', 'models': [{'name': 'whisper-byop', 'versions': 3, 'owner_id': '""', 'last_update_time': datetime.datetime(2024, 7, 31, 16, 49, 34, 758116, tzinfo=tzutc()), 'created_at': datetime.datetime(2024, 7, 31, 16, 43, 21, 150329, tzinfo=tzutc())}], 'pipelines': [{'name': 'whisper-hf-byop', 'create_time': datetime.datetime(2024, 7, 31, 16, 43, 14, 261908, tzinfo=tzutc()), 'definition': '[]'}]}

Configure & Upload Model

For this example, we will use the openai/whisper-tiny model for the automatic-speech-recognition pipeline task from the official 🤗 Hugging Face hub.

To manually create an automatic-speech-recognition pipeline from the 🤗 Hugging Face hub link above:

  1. Download the original model from the the official 🤗 Hugging Face hub.
from transformers import pipeline

pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
pipe.save_pretrained("asr-whisper-tiny/")

As a last step, you can zip the folder containing all needed files as follows:

zip -r asr-whisper-tiny.zip asr-whisper-tiny/

Configure PyArrow Schema

You can find more info on the available inputs for the automatic-speech-recognition pipeline under the official source code from 🤗 Hugging Face.

The input and output schemas are defined in Apache pyarrow Schema format.

The model is then uploaded with the wallaroo.client.model_upload method, where we define:

  • The name to assign the model.
  • The model file path.
  • The input and output schemas.

The model is uploaded to the Wallaroo instance, where it is containerized to run with the Wallaroo Inference Engine.

input_schema = pa.schema([
    pa.field('inputs', pa.list_(pa.float32())), # required: the audio stored in numpy arrays of shape (num_samples,) and data type `float32`
    pa.field('return_timestamps', pa.string()) # optional: return start & end times for each predicted chunk
]) 

output_schema = pa.schema([
    pa.field('text', pa.string()), # required: the output text corresponding to the audio input
    pa.field('chunks', pa.list_(pa.struct([('text', pa.string()), ('timestamp', pa.list_(pa.float32()))]))), # required (if `return_timestamps` is set), start & end times for each predicted chunk
])
model = wl.upload_model(model_name, 
                        model_file_name, 
                        framework=Framework.HUGGING_FACE_AUTOMATIC_SPEECH_RECOGNITION, 
                        input_schema=input_schema, 
                        output_schema=output_schema)
model
Waiting for model loading - this will take up to 10.0min.
Model is pending loading to a container runtime..
Model is attempting loading to a container runtime....................successful

Ready

Namewhisper-byop
Versione8a165c0-b284-44ec-8334-d852120cced2
File Namemodel-auto-conversion_hugging-face_complex-pipelines_asr-whisper-tiny.zip
SHAddd57c9c8d3ed5417783ebb7101421aa1e79429365d20326155c9c02ae1e8a13
Statusready
Image Pathproxy.replicated.com/proxy/wallaroo/ghcr.io/wallaroolabs/mac-deploy:v2024.2.0-main-5473
Architecturex86
Accelerationnone
Updated At2024-01-Aug 15:04:24
Workspace id20
Workspace namewhisper-tiny-demo

Deploy Pipeline

The model is deployed with the wallaroo.pipeline.deploy(deployment_config) command. For the deployment configuration, we set the containerized aka sidekick memory to 8 GB to accommodate the size of the model, and CPUs to at least 4. To optimize performance, a GPU could be assigned to the containerized model.

deployment_config = DeploymentConfigBuilder() \
    .cpus(0.25).memory('1Gi') \
    .sidekick_memory(model, '8Gi') \
    .sidekick_cpus(model, 4.0) \
    .build()
pipeline = wl.build_pipeline(pipeline_name)
pipeline.add_model_step(model)

pipeline.deploy(deployment_config=deployment_config)
namewhisper-hf-byop
created2024-07-31 16:43:14.261908+00:00
last_updated2024-08-01 15:04:27.100177+00:00
deployedTrue
workspace_id20
workspace_namewhisper-tiny-demo
archx86
accelnone
tags
versions2eae56f0-6092-4243-9e9c-941ffe161c80, 6e3cc0f9-0593-4935-8632-7984dd5fb14a, e9e72cbc-f75d-45b1-86e3-709d8f526adc, 648838fd-4fcf-47b5-9315-393b5a51a389
stepswhisper-byop
publishedFalse

After a couple of minutes we verify the pipeline deployment was successful.

pipeline.status()
{'status': 'Running',
 'details': [],
 'engines': [{'ip': '10.28.1.43',
   'name': 'engine-7988747c5d-h5ff9',
   'status': 'Running',
   'reason': None,
   'details': [],
   'pipeline_statuses': {'pipelines': [{'id': 'whisper-hf-byop',
      'status': 'Running',
      'version': '2eae56f0-6092-4243-9e9c-941ffe161c80'}]},
   'model_statuses': {'models': [{'name': 'whisper-byop',
      'sha': 'ddd57c9c8d3ed5417783ebb7101421aa1e79429365d20326155c9c02ae1e8a13',
      'status': 'Running',
      'version': 'e8a165c0-b284-44ec-8334-d852120cced2'}]}}],
 'engine_lbs': [{'ip': '10.28.1.42',
   'name': 'engine-lb-6b59985857-cv6ht',
   'status': 'Running',
   'reason': None,
   'details': []}],
 'sidekicks': [{'ip': '10.28.1.41',
   'name': 'engine-sidekick-whisper-byop-35-6c4c65695b-kfnh2',
   'status': 'Running',
   'reason': None,
   'details': [],
   'statuses': '\n'}]}

Run inference on the example dataset

We perform a sample inference with the provided DataFrame, and display the results.

%%time
result = pipeline.infer_from_file('./data/sound-examples.df.json', timeout=10000)
CPU times: user 127 ms, sys: 49.2 ms, total: 176 ms
Wall time: 5.89 s
display(result)
timein.inputsin.return_timestampsout.chunksout.textanomaly.count
02024-08-01 15:05:15.616[0.0003229662, 0.0003370901, 0.0002854846, 0.0...word[{'text': ' He', 'timestamp': [0.0, 1.08]}, {'...He hoped there would be Stu for dinner, turni...0
12024-08-01 15:05:15.616[0.0010076478, 0.0012469155, 0.0008045971, 0.0...word[{'text': ' Stuff', 'timestamp': [29.78, 29.78...Stuff it into you. His belly calcled him.0

Evaluate results

Let’s compare the results side by side with the audio inputs.

for transcription in result['out.text'].values:
    print(f"Transcription: {transcription}\n")
Transcription:  He hoped there would be Stu for dinner, turnips and carrots and bruised potatoes and fat mutton pieces to be ladled out in thick, peppered, flour-fat and sauce.

Transcription: Stuff it into you. His belly calcled him.

Undeploy Pipelines

With the demonstration complete, we undeploy the pipelines to return the resources back to the Wallaroo instance.

pipeline.undeploy()
namewhisper-hf-byop
created2024-07-31 16:43:14.261908+00:00
last_updated2024-08-01 15:04:27.100177+00:00
deployedFalse
workspace_id20
workspace_namewhisper-tiny-demo
archx86
accelnone
tags
versions2eae56f0-6092-4243-9e9c-941ffe161c80, 6e3cc0f9-0593-4935-8632-7984dd5fb14a, e9e72cbc-f75d-45b1-86e3-709d8f526adc, 648838fd-4fcf-47b5-9315-393b5a51a389
stepswhisper-byop
publishedFalse