Wallaroo Edge Observability with Classification Financial Models

A demonstration on publishing an a Classification Financial model with Edge Observability through Wallaroo.

The following tutorial is available on the Wallaroo Github Repository.

Classification Financial Services Edge Deployment Demonstration

This notebook will walk through building Wallaroo pipeline with a a Classification model deployed to detect the likelihood of credit card fraud, then publishing that pipeline to an Open Container Initiative (OCI) Registry where it can be deployed in other Docker and Kubernetes environments.

This demonstration will focus on deployment to the edge. For further examples of using Wallaroo with this computer vision models, see Wallaroo 101.

This demonstration performs the following:

  • In Wallaroo Ops:
    • Setting up a workspace, pipeline, and model for deriving the price of a house based on inputs.
    • Creating an assay from a sample of inferences.
    • Display the inference result and upload the assay to the Wallaroo instance where it can be referenced later.
  • In a remote aka edge location:
    • Deploying the Wallaroo pipeline as a Wallaroo Inference Server deployed on an edge device with observability features.
  • In Wallaroo Ops:
    • Observe the Wallaroo Ops and remote Wallaroo Inference Server inference results as part of the pipeline logs.

Prerequisites

  • A deployed Wallaroo Ops instance.
  • A location with Docker or Kubernetes with helm for Wallaroo Inference server deployments.
  • The following Python libraries installed:
    • wallaroo: The Wallaroo SDK. Included with the Wallaroo JupyterHub service by default.
    • pandas: Pandas, mainly used for Pandas DataFrame

References

Data Scientist Pipeline Publish Steps

Load Libraries

The first step is to import the libraries used in this notebook.

import wallaroo
from wallaroo.object import EntityNotFoundError

import pyarrow as pa
import pandas as pd
import requests

# used to display dataframe information without truncating
from IPython.display import display
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)

Connect to the Wallaroo Instance through the User Interface

The next step is to connect to Wallaroo through the Wallaroo client. The Python library is included in the Wallaroo install and available through the Jupyter Hub interface provided with your Wallaroo environment.

This is accomplished using the wallaroo.Client() command, which provides a URL to grant the SDK permission to your specific Wallaroo environment. When displayed, enter the URL into a browser and confirm permissions. Store the connection into a variable that can be referenced later.

If logging into the Wallaroo instance through the internal JupyterHub service, use wl = wallaroo.Client(). For more information on Wallaroo Client settings, see the Client Connection guide.

wl = wallaroo.Client()

Create a New Workspace

We’ll use the SDK below to create our workspace , assign as our current workspace, then display all of the workspaces we have at the moment. We’ll also set up variables for our models and pipelines down the road, so we have one spot to change names to whatever fits your organization’s standards best.

To allow this tutorial to be run by multiple users in the same Wallaroo instance, a random 4 character prefix will be added to the workspace, pipeline, and model. Feel free to set suffix='' if this is not required.

workspace_name = f'edge-observability-demo'
pipeline_name = 'edge-observability-pipeline'
xgboost_model_name = 'ccfraud-xgboost'
xgboost_model_file_name = './models/xgboost_ccfraud.onnx'
workspace = wl.get_workspace(name=workspace_name, create_if_not_exist=True)

wl.set_current_workspace(workspace)
{'name': 'edge-observability-demo', 'id': 14, 'archived': False, 'created_by': '1a819833-f4ef-4298-8065-1785a7014681', 'created_at': '2025-07-15T20:41:35.762274+00:00', 'models': [], 'pipelines': []}

Upload the Model

When a model is uploaded to a Wallaroo cluster, it is optimized and packaged to make it ready to run as part of a pipeline. In many times, the Wallaroo Server can natively run a model without any Python overhead. In other cases, such as a Python script, a custom Python environment will be automatically generated. This is comparable to the process of “containerizing” a model by adding a small HTTP server and other wrapping around it.

Our pretrained model is in ONNX format, which is specified in the framework parameter.

xgboost_edge_demo_model = wl.upload_model(
    xgboost_model_name,
    xgboost_model_file_name,
    framework=wallaroo.framework.Framework.ONNX,
).configure(tensor_fields=["tensor"])

Reserve Pipeline Resources

Before deploying an inference engine we need to tell wallaroo what resources it will need.
To do this we will use the wallaroo DeploymentConfigBuilder() and fill in the options listed below to determine what the properties of our inference engine will be.

We will be testing this deployment for an edge scenario, so the resource specifications are kept small – what’s the minimum needed to meet the expected load on the planned hardware.

  • cpus - 1 => allow the engine to use 4 CPU cores when running the neural net
  • memory - 900Mi => each inference engine will have 2 GB of memory, which is plenty for processing a single image at a time.
deploy_config = (wallaroo
                 .DeploymentConfigBuilder()
                 .replica_count(1)
                 .cpus(1)
                 .memory("900Mi")
                 .build()
                 )

Simulated Edge Deployment

We will now deploy our pipeline into the current Kubernetes environment using the specified resource constraints. This is a “simulated edge” deploy in that we try to mimic the edge hardware as closely as possible.

pipeline = wl.build_pipeline(pipeline_name)
display(pipeline)

# clear the pipeline if previously run
pipeline.clear()
pipeline.add_model_step(xgboost_edge_demo_model)

pipeline.deploy(deployment_config = deploy_config)
nameedge-observability-pipeline
created2025-07-15 20:41:38.245515+00:00
last_updated2025-07-15 20:41:38.245515+00:00
deployed(none)
workspace_id14
workspace_nameedge-observability-demo
archNone
accelNone
tags
versionsf653611c-f553-4727-aa73-44822a1c2f47
steps
publishedFalse
nameedge-observability-pipeline
created2025-07-15 20:41:38.245515+00:00
last_updated2025-07-15 20:41:39.142365+00:00
deployedTrue
workspace_id14
workspace_nameedge-observability-demo
archx86
accelnone
tags
versionsa383ee0b-15a3-4a43-8bfa-0b8f52d4a953, f653611c-f553-4727-aa73-44822a1c2f47
stepsccfraud-xgboost
publishedFalse

Run Single Image Inference

A single image, encoded using the Apache Arrow format, is sent to the deployed pipeline. Arrow is used here because, as a binary protocol, there is far lower network and compute overhead than using JSON. The Wallaroo Server engine accepts both JSON, pandas DataFrame, and Apache Arrow formats.

The sample DataFrames and arrow tables are in the ./data directory. We’ll use the Apache Arrow table cc_data_10k.arrow.

Once complete, we’ll display how long the inference request took.

import datetime
import time

deploy_url = pipeline._deployment._url()

headers = wl.auth.auth_header()

headers['Content-Type']='application/vnd.apache.arrow.file'
# headers['Content-Type']='application/json; format=pandas-records'
headers['Accept']='application/json; format=pandas-records'

dataFile = './data/cc_data_1k.arrow'
local_inference_start = datetime.datetime.now()
!curl -X POST {deploy_url} \
     -H "Authorization:{headers['Authorization']}" \
     -H "Content-Type:{headers['Content-Type']}" \
     -H "Accept:{headers['Accept']}" \
     --data-binary @{dataFile} > curl_response_xgboost.df.json
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  801k  100  687k  100  114k  1428k   238k --:--:-- --:--:-- --:--:-- 1669k

We will import the inference output, and isolate the metadata partition to store where the inference results are stored in the pipeline logs.

# display the first 20 results

df_results = pd.read_json('./curl_response_xgboost.df.json', orient="records")
# get just the partition
df_results['partition'] = df_results['metadata'].map(lambda x: x['partition'])
# display(df_results.head(20))
display(df_results.head(20).loc[:, ['time', 'out', 'partition']])
timeoutpartition
01752612113814{'variable': [1.0094898]}engine-76bdf5f5d6-d299v
11752612113814{'variable': [1.0094898]}engine-76bdf5f5d6-d299v
21752612113814{'variable': [1.0094898]}engine-76bdf5f5d6-d299v
31752612113814{'variable': [1.0094898]}engine-76bdf5f5d6-d299v
41752612113814{'variable': [-1.9073485999999998e-06]}engine-76bdf5f5d6-d299v
51752612113814{'variable': [-4.4882298e-05]}engine-76bdf5f5d6-d299v
61752612113814{'variable': [-9.36985e-05]}engine-76bdf5f5d6-d299v
71752612113814{'variable': [-8.3208084e-05]}engine-76bdf5f5d6-d299v
81752612113814{'variable': [-8.332728999999999e-05]}engine-76bdf5f5d6-d299v
91752612113814{'variable': [0.0004896521599999999]}engine-76bdf5f5d6-d299v
101752612113814{'variable': [0.0006609559]}engine-76bdf5f5d6-d299v
111752612113814{'variable': [7.57277e-05]}engine-76bdf5f5d6-d299v
121752612113814{'variable': [-0.000100553036]}engine-76bdf5f5d6-d299v
131752612113814{'variable': [-0.0005198717]}engine-76bdf5f5d6-d299v
141752612113814{'variable': [-3.695488e-06]}engine-76bdf5f5d6-d299v
151752612113814{'variable': [-0.00010883808]}engine-76bdf5f5d6-d299v
161752612113814{'variable': [-0.00017666817]}engine-76bdf5f5d6-d299v
171752612113814{'variable': [-2.8312206e-05]}engine-76bdf5f5d6-d299v
181752612113814{'variable': [2.1755695e-05]}engine-76bdf5f5d6-d299v
191752612113814{'variable': [-8.493661999999999e-05]}engine-76bdf5f5d6-d299v

Undeploy Pipeline

With our testing complete, we will undeploy the pipeline and return the resources back to the cluster.

pipeline.undeploy()
nameedge-observability-pipeline
created2025-07-15 20:41:38.245515+00:00
last_updated2025-07-15 20:41:39.142365+00:00
deployedFalse
workspace_id14
workspace_nameedge-observability-demo
archx86
accelnone
tags
versionsa383ee0b-15a3-4a43-8bfa-0b8f52d4a953, f653611c-f553-4727-aa73-44822a1c2f47
stepsccfraud-xgboost
publishedFalse

Publish the Pipeline for Edge Deployment

It worked! For a demo, we’ll take working once as “tested”. So now that we’ve tested our pipeline, we are ready to publish it for edge deployment.

Publishing it means assembling all of the configuration files and model assets and pushing them to an Open Container Initiative (OCI) repository set in the Wallaroo instance as the Edge Registry service. DevOps engineers then retrieve that image and deploy it through Docker, Kubernetes, or similar deployments.

See Edge Deployment Registry Guide for details on adding an OCI Registry Service to Wallaroo as the Edge Deployment Registry.

This is done through the SDK command wallaroo.pipeline.publish(deployment_config).

Publish Example

We will now publish the pipeline to our Edge Deployment Registry with the pipeline.publish(deployment_config) command. deployment_config is an optional field that specifies the pipeline deployment. This can be overridden by the DevOps engineer during deployment.

pub=pipeline.publish(deploy_config)
display(pub)
Waiting for pipeline publish... It may take up to 600 sec.
Pipeline is publishing..... Published.
ID3
Pipeline Nameedge-observability-pipeline
Pipeline Version7b3c8209-0242-4458-99f2-aee9626c8a4c
StatusPublished
Workspace Id14
Workspace Nameedge-observability-demo
Edges
Engine URLghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/fitzroy-mini:v2025.1.0-6250
Pipeline URLghcr.io/wallaroolabs/doc-samples/pipelines/edge-observability-pipeline:7b3c8209-0242-4458-99f2-aee9626c8a4c
Helm Chart URLoci://ghcr.io/wallaroolabs/doc-samples/charts/edge-observability-pipeline
Helm Chart Referenceghcr.io/wallaroolabs/doc-samples/charts@sha256:6b26eace95cfb07dc1001d0bd883551f9d3360a3a219dabe6b91c18d9cb3bd82
Helm Chart Version0.0.1-7b3c8209-0242-4458-99f2-aee9626c8a4c
Engine Config{'engine': {'resources': {'limits': {'cpu': 1.0, 'memory': '900Mi'}, 'requests': {'cpu': 1.0, 'memory': '900Mi'}, 'accel': 'none', 'arch': 'x86', 'gpu': False}}, 'engineAux': {'autoscale': {'type': 'none', 'cpu_utilization': 50.0}, 'images': {}}}
User Images[]
Created Byjohn.hansarick@wallaroo.ai
Created At2025-07-15 20:42:33.900563+00:00
Updated At2025-07-15 20:42:33.900563+00:00
Replaces
Docker Run Command
docker run \
    -p $EDGE_PORT:8080 \
    -e OCI_USERNAME=$OCI_USERNAME \
    -e OCI_PASSWORD=$OCI_PASSWORD \
    -e PIPELINE_URL=ghcr.io/wallaroolabs/doc-samples/pipelines/edge-observability-pipeline:7b3c8209-0242-4458-99f2-aee9626c8a4c \
    -e CONFIG_CPUS=1.0 --cpus=1.0 --memory=900m \
    ghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/fitzroy-mini:v2025.1.0-6250

Note: Please set the EDGE_PORT, OCI_USERNAME, and OCI_PASSWORD environment variables.
Podman Run Command
podman run \
    -p $EDGE_PORT:8080 \
    -e OCI_USERNAME=$OCI_USERNAME \
    -e OCI_PASSWORD=$OCI_PASSWORD \
    -e PIPELINE_URL=ghcr.io/wallaroolabs/doc-samples/pipelines/edge-observability-pipeline:7b3c8209-0242-4458-99f2-aee9626c8a4c \
    -e CONFIG_CPUS=1.0 --cpus=1.0 --memory=900m \
    ghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/fitzroy-mini:v2025.1.0-6250

Note: Please set the EDGE_PORT, OCI_USERNAME, and OCI_PASSWORD environment variables.
Helm Install Command
helm install --atomic $HELM_INSTALL_NAME \
    oci://ghcr.io/wallaroolabs/doc-samples/charts/edge-observability-pipeline \
    --namespace $HELM_INSTALL_NAMESPACE \
    --version 0.0.1-7b3c8209-0242-4458-99f2-aee9626c8a4c \
    --set ociRegistry.username=$OCI_USERNAME \
    --set ociRegistry.password=$OCI_PASSWORD

Note: Please set the HELM_INSTALL_NAME, HELM_INSTALL_NAMESPACE, OCI_USERNAME, and OCI_PASSWORD environment variables.

List Published Pipelines

The method wallaroo.client.list_pipelines() shows a list of all pipelines in the Wallaroo instance, and includes the published field that indicates whether the pipeline was published to the registry (True), or has not yet been published (False).

wl.list_pipelines()
namecreatedlast_updateddeployedworkspace_idworkspace_namearchacceltagsversionsstepspublished
houseprice-estimation-edge2025-15-Jul 20:28:192025-15-Jul 20:34:34False13edge-observabilityx86none8d289f8d-a4c9-4114-80ba-f1704cbfbb96, 337078e8-65e5-42a3-b780-f804566d08d9, b79d03bd-9655-4fbc-873c-e1db371ef237housepricesagacontrolTrue
ccfraudpipeline2025-21-May 17:41:272025-21-May 17:48:58False7ccfraudworkspacex86none02e08ef4-5ae4-4b8c-841d-8261a10003d3, f74d6166-6b74-454f-9cf2-c4d4ceb4b2ee, 07068a0e-307c-4d00-9aa1-117d7abc2addccfraudmodelFalse
edge-observability-pipeline2025-15-Jul 20:41:382025-15-Jul 20:42:32False14edge-observability-demox86none7b3c8209-0242-4458-99f2-aee9626c8a4c, a383ee0b-15a3-4a43-8bfa-0b8f52d4a953, f653611c-f553-4727-aa73-44822a1c2f47ccfraud-xgboostTrue
data-optimization2025-28-May 15:38:462025-28-May 18:50:01False8data-optimizations-samplesx86nonea0541ba4-342f-4701-9869-78f6ec50e7b8, d2952445-2b6e-4076-a9b3-0473edea2b72, 1a8ab18f-d631-4b93-9713-0e22e06b46e7, b4a004d8-7794-4b0b-856e-409f4a5c3ee9, 5e7dc8b9-850a-43c8-8beb-efb8e7006321, c068190e-327d-4711-b26b-a803a6a067fe, c5cce358-c198-4975-a936-dcd748a1bace, 1028cf46-d00a-4b8f-adbf-d47925d83d18, 28585f0a-1b24-49df-b30f-38731d5d4c3f, 8a59bf2b-bb70-48aa-a47c-334790a29822, 7ae83989-d8e2-41e7-8dc0-bcfff9fae23e, d38f0e28-fd4a-43cd-8561-944e2460012aFalse
retail-inv-tracker-edge-obs2025-06-Jun 17:08:352025-06-Jun 20:49:46True9cv-retail-edge-observabilityx86none4ece4473-4d0a-4099-bb12-44f5aa935f6d, 236fb9b1-9a55-4600-bf61-5ccc94d53d40, 5da5f802-ca19-40cd-9c55-56e4afffe908, 9b8dac52-9614-4e43-9570-d0c6f3807986, b03a9ab3-ed18-4f63-a926-8d690f49a1eb, 771d556e-07cf-4454-82d6-74482e919e9e, 424ba9d1-0268-4c9a-8857-309a26304b8c, aa8d2fb9-9c68-4ed0-9bc4-4ecb0b864da2, c93e9a30-28db-4a56-8fe4-36a2579d2034, 3ffffa72-850b-435f-97d3-178509b44c8e, b7a3838f-ca50-4450-b652-b7e53c43c7f7, eff43c91-bf7c-4e8d-b96e-33802880efaa, 54ed6c0e-4fcb-45f2-88c8-ecb8689ee0be, b32b539a-2f0b-420d-bdb9-9b8fc923a085, f6b76f98-6837-4ab8-893e-15ed82c24923, 051af6ea-2072-4d20-b3c9-47be7215b2ec, 3761d079-5873-47be-8e63-c437cbbcd8e6, f142ab00-1922-4f0e-924e-45bbfe240bcd, 6f541da2-f85e-49b5-8088-a17682b0cacb, a2dded5f-29b0-45d3-a335-2849e0487047, 0f41286a-c247-49f5-85ad-4d6244d5d808, f0f6194b-392e-49ad-8370-016a13c28513, 735e84e5-daa4-461c-87ec-2ccc4ac82630False
keras-sequential-single-io2025-14-Jul 19:50:552025-14-Jul 19:50:55(unknown)11keras-sequential-single-ioNoneNone90efa901-177b-48ad-8f23-c4d8a46a5f53False
assay-demonstration-tutorial2025-15-Jul 17:00:032025-15-Jul 17:03:13False12run-anywhere-assay-demonstration-tutorialx86none1ff19772-f41f-42fb-b0d1-f82130bf5801, 650c049a-5015-420f-8b37-026bc7c71ec7, 0b169c95-3aa4-4fe3-864d-4e6a6186800fhouse-price-estimatorTrue

List Publishes from a Pipeline

All publishes created from a pipeline are displayed with the wallaroo.pipeline.publishes method. The pipeline_version_id is used to know what version of the pipeline was used in that specific publish. This allows for pipelines to be updated over time, and newer versions to be sent and tracked to the Edge Deployment Registry service.

List Publishes Parameters

N/A

List Publishes Returns

A List of the following fields:

FieldTypeDescription
idintegerNumerical Wallaroo id of the published pipeline.
pipeline_version_idintegerNumerical Wallaroo id of the pipeline version published.
engine_urlstringThe URL of the published pipeline engine in the edge registry.
pipeline_urlstringThe URL of the published pipeline in the edge registry.
created_bystringThe email address of the user that published the pipeline.
Created AtDateTimeWhen the published pipeline was created.
Updated AtDateTimeWhen the published pipeline was updated.
pipeline.publishes()
idPipeline NamePipeline VersionWorkspace IdWorkspace NameEdgesEngine URLPipeline URLCreated ByCreated AtUpdated At
3edge-observability-pipeline7b3c8209-0242-4458-99f2-aee9626c8a4c14edge-observability-demoghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/fitzroy-mini:v2025.1.0-6250ghcr.io/wallaroolabs/doc-samples/pipelines/edge-observability-pipeline:7b3c8209-0242-4458-99f2-aee9626c8a4cjohn.hansarick@wallaroo.ai2025-15-Jul 20:42:332025-15-Jul 20:42:33

DevOps - Pipeline Edge Deployment

Once a pipeline is deployed to the Edge Registry service, it can be deployed in environments such as Docker, Kubernetes, or similar container running services by a DevOps engineer as a Wallaroo Server.

The following guides will demonstrate publishing a Wallaroo Pipeline as a Wallaroo Server.

Add Edge Location

Wallaroo Servers can optionally connect to the Wallaroo Ops instance and transmit their inference results. These are added to the pipeline logs for the published pipeline the Wallaroo Server is associated with.

Wallaroo Servers are added with the wallaroo.pipeline_publish.add_edge(name: string) method. The name is the unique primary key for each edge added to the pipeline publish and must be unique.

This returns a Publish Edge with the following fields:

FieldTypeDescription
idIntegerThe integer ID of the pipeline publish.
created_atDateTimeThe DateTime of the pipeline publish.
docker_run_variablesStringThe Docker variables in UUID format that include the following: The BUNDLE_VERSION, EDGE_NAME, JOIN_TOKEN_, OPSCENTER_HOST, PIPELINE_URL, and WORKSPACE_ID.
engine_configStringThe Wallaroo wallaroo.deployment_config.DeploymentConfig for the pipeline.
pipeline_version_idIntegerThe integer identifier of the pipeline version published.
statusStringThe status of the publish. Published is a successful publish.
updated_atDateTimeThe DateTime when the pipeline publish was updated.
user_imagesList(String)User images used in the pipeline publish.
created_byStringThe UUID of the Wallaroo user that created the pipeline publish.
engine_urlStringThe URL for the published pipeline’s Wallaroo engine in the OCI registry.
errorStringAny errors logged.
helmStringThe helm chart, helm reference and helm version.
pipeline_urlStringThe URL for the published pipeline’s container in the OCI registry.
pipeline_version_nameStringThe UUID identifier of the pipeline version published.
additional_propertiesStringAny other identities.

Two edge publishes will be created so we can demonstrate removing an edge shortly.

edge_01_name = f'edge-ccfraud-observability-01'
edge01 = pub.add_edge(edge_01_name)
display(edge01)

edge_02_name = f'edge-ccfraud-observability-02'
edge02 = pub.add_edge(edge_02_name)
display(edge02)
ID3
Pipeline Nameedge-observability-pipeline
Pipeline Version7b3c8209-0242-4458-99f2-aee9626c8a4c
StatusPublished
Workspace Id14
Workspace Nameedge-observability-demo
Edgesedge-ccfraud-observability-01
Engine URLghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/fitzroy-mini:v2025.1.0-6250
Pipeline URLghcr.io/wallaroolabs/doc-samples/pipelines/edge-observability-pipeline:7b3c8209-0242-4458-99f2-aee9626c8a4c
Helm Chart URLoci://ghcr.io/wallaroolabs/doc-samples/charts/edge-observability-pipeline
Helm Chart Referenceghcr.io/wallaroolabs/doc-samples/charts@sha256:6b26eace95cfb07dc1001d0bd883551f9d3360a3a219dabe6b91c18d9cb3bd82
Helm Chart Version0.0.1-7b3c8209-0242-4458-99f2-aee9626c8a4c
Engine Config{'engine': {'resources': {'limits': {'cpu': 1.0, 'memory': '900Mi'}, 'requests': {'cpu': 1.0, 'memory': '900Mi'}, 'accel': 'none', 'arch': 'x86', 'gpu': False}}, 'engineAux': {'autoscale': {'type': 'none', 'cpu_utilization': 50.0}, 'images': {}}}
User Images[]
Created Byjohn.hansarick@wallaroo.ai
Created At2025-07-15 20:42:33.900563+00:00
Updated At2025-07-15 20:42:33.900563+00:00
Replaces
Docker Run Command
docker run -v $PERSISTENT_VOLUME_DIR:/persist \
    -p $EDGE_PORT:8080 \
    -e OCI_USERNAME=$OCI_USERNAME \
    -e OCI_PASSWORD=$OCI_PASSWORD \
    -e EDGE_BUNDLE=ZXhwb3J0IEJVTkRMRV9WRVJTSU9OPTEKZXhwb3J0IENPTkZJR19DUFVTPTEKZXhwb3J0IEVER0VfTkFNRT1lZGdlLWNjZnJhdWQtb2JzZXJ2YWJpbGl0eS0wMQpleHBvcnQgT1BTQ0VOVEVSX0hPU1Q9ZG9jLXRlc3Qud2FsbGFyb29jb21tdW5pdHkubmluamEKZXhwb3J0IFBJUEVMSU5FX1VSTD1naGNyLmlvL3dhbGxhcm9vbGFicy9kb2Mtc2FtcGxlcy9waXBlbGluZXMvZWRnZS1vYnNlcnZhYmlsaXR5LXBpcGVsaW5lOjdiM2M4MjA5LTAyNDItNDQ1OC05OWYyLWFlZTk2MjZjOGE0YwpleHBvcnQgSk9JTl9UT0tFTj1kMDVmYTU1OC02MTg2LTQyMTQtYjNjYy0zNTI1NDcyMjVlNDUKZXhwb3J0IE9DSV9SRUdJU1RSWT1naGNyLmlv\
    -e PIPELINE_URL=ghcr.io/wallaroolabs/doc-samples/pipelines/edge-observability-pipeline:7b3c8209-0242-4458-99f2-aee9626c8a4c \
    -e CONFIG_CPUS=1.0 --cpus=1.0 --memory=900m \
    ghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/fitzroy-mini:v2025.1.0-6250

Note: Please set the PERSISTENT_VOLUME_DIR, EDGE_PORT, OCI_USERNAME, and OCI_PASSWORD environment variables.
Podman Run Command
podman run -v $PERSISTENT_VOLUME_DIR:/persist \
    -p $EDGE_PORT:8080 \
    -e OCI_USERNAME=$OCI_USERNAME \
    -e OCI_PASSWORD=$OCI_PASSWORD \
    -e EDGE_BUNDLE=ZXhwb3J0IEJVTkRMRV9WRVJTSU9OPTEKZXhwb3J0IENPTkZJR19DUFVTPTEKZXhwb3J0IEVER0VfTkFNRT1lZGdlLWNjZnJhdWQtb2JzZXJ2YWJpbGl0eS0wMQpleHBvcnQgT1BTQ0VOVEVSX0hPU1Q9ZG9jLXRlc3Qud2FsbGFyb29jb21tdW5pdHkubmluamEKZXhwb3J0IFBJUEVMSU5FX1VSTD1naGNyLmlvL3dhbGxhcm9vbGFicy9kb2Mtc2FtcGxlcy9waXBlbGluZXMvZWRnZS1vYnNlcnZhYmlsaXR5LXBpcGVsaW5lOjdiM2M4MjA5LTAyNDItNDQ1OC05OWYyLWFlZTk2MjZjOGE0YwpleHBvcnQgSk9JTl9UT0tFTj1kMDVmYTU1OC02MTg2LTQyMTQtYjNjYy0zNTI1NDcyMjVlNDUKZXhwb3J0IE9DSV9SRUdJU1RSWT1naGNyLmlv\
    -e PIPELINE_URL=ghcr.io/wallaroolabs/doc-samples/pipelines/edge-observability-pipeline:7b3c8209-0242-4458-99f2-aee9626c8a4c \
    -e CONFIG_CPUS=1.0 --cpus=1.0 --memory=900m \
    ghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/fitzroy-mini:v2025.1.0-6250

Note: Please set the PERSISTENT_VOLUME_DIR, EDGE_PORT, OCI_USERNAME, and OCI_PASSWORD environment variables.
Helm Install Command
helm install --atomic $HELM_INSTALL_NAME \
    oci://ghcr.io/wallaroolabs/doc-samples/charts/edge-observability-pipeline \
    --namespace $HELM_INSTALL_NAMESPACE \
    --version 0.0.1-7b3c8209-0242-4458-99f2-aee9626c8a4c \
    --set ociRegistry.username=$OCI_USERNAME \
    --set ociRegistry.password=$OCI_PASSWORD \
    --set edgeBundle=ZXhwb3J0IEJVTkRMRV9WRVJTSU9OPTEKZXhwb3J0IENPTkZJR19DUFVTPTEKZXhwb3J0IEVER0VfTkFNRT1lZGdlLWNjZnJhdWQtb2JzZXJ2YWJpbGl0eS0wMQpleHBvcnQgT1BTQ0VOVEVSX0hPU1Q9ZG9jLXRlc3Qud2FsbGFyb29jb21tdW5pdHkubmluamEKZXhwb3J0IFBJUEVMSU5FX1VSTD1naGNyLmlvL3dhbGxhcm9vbGFicy9kb2Mtc2FtcGxlcy9waXBlbGluZXMvZWRnZS1vYnNlcnZhYmlsaXR5LXBpcGVsaW5lOjdiM2M4MjA5LTAyNDItNDQ1OC05OWYyLWFlZTk2MjZjOGE0YwpleHBvcnQgSk9JTl9UT0tFTj1kMDVmYTU1OC02MTg2LTQyMTQtYjNjYy0zNTI1NDcyMjVlNDUKZXhwb3J0IE9DSV9SRUdJU1RSWT1naGNyLmlv

Note: Please set the HELM_INSTALL_NAME, HELM_INSTALL_NAMESPACE, OCI_USERNAME, and OCI_PASSWORD environment variables.
ID3
Pipeline Nameedge-observability-pipeline
Pipeline Version7b3c8209-0242-4458-99f2-aee9626c8a4c
StatusPublished
Workspace Id14
Workspace Nameedge-observability-demo
Edgesedge-ccfraud-observability-01
edge-ccfraud-observability-02
Engine URLghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/fitzroy-mini:v2025.1.0-6250
Pipeline URLghcr.io/wallaroolabs/doc-samples/pipelines/edge-observability-pipeline:7b3c8209-0242-4458-99f2-aee9626c8a4c
Helm Chart URLoci://ghcr.io/wallaroolabs/doc-samples/charts/edge-observability-pipeline
Helm Chart Referenceghcr.io/wallaroolabs/doc-samples/charts@sha256:6b26eace95cfb07dc1001d0bd883551f9d3360a3a219dabe6b91c18d9cb3bd82
Helm Chart Version0.0.1-7b3c8209-0242-4458-99f2-aee9626c8a4c
Engine Config{'engine': {'resources': {'limits': {'cpu': 1.0, 'memory': '900Mi'}, 'requests': {'cpu': 1.0, 'memory': '900Mi'}, 'accel': 'none', 'arch': 'x86', 'gpu': False}}, 'engineAux': {'autoscale': {'type': 'none', 'cpu_utilization': 50.0}, 'images': {}}}
User Images[]
Created Byjohn.hansarick@wallaroo.ai
Created At2025-07-15 20:42:33.900563+00:00
Updated At2025-07-15 20:42:33.900563+00:00
Replaces
Docker Run Command
docker run -v $PERSISTENT_VOLUME_DIR:/persist \
    -p $EDGE_PORT:8080 \
    -e OCI_USERNAME=$OCI_USERNAME \
    -e OCI_PASSWORD=$OCI_PASSWORD \
    -e PIPELINE_URL=ghcr.io/wallaroolabs/doc-samples/pipelines/edge-observability-pipeline:7b3c8209-0242-4458-99f2-aee9626c8a4c\
    -e EDGE_BUNDLE=ZXhwb3J0IEJVTkRMRV9WRVJTSU9OPTEKZXhwb3J0IENPTkZJR19DUFVTPTEKZXhwb3J0IEVER0VfTkFNRT1lZGdlLWNjZnJhdWQtb2JzZXJ2YWJpbGl0eS0wMgpleHBvcnQgT1BTQ0VOVEVSX0hPU1Q9ZG9jLXRlc3Qud2FsbGFyb29jb21tdW5pdHkubmluamEKZXhwb3J0IFBJUEVMSU5FX1VSTD1naGNyLmlvL3dhbGxhcm9vbGFicy9kb2Mtc2FtcGxlcy9waXBlbGluZXMvZWRnZS1vYnNlcnZhYmlsaXR5LXBpcGVsaW5lOjdiM2M4MjA5LTAyNDItNDQ1OC05OWYyLWFlZTk2MjZjOGE0YwpleHBvcnQgSk9JTl9UT0tFTj03MmViOWQyZi1mMzIwLTQ0ZjktOTI1OS05NWJmZDgyYjkwMjgKZXhwb3J0IE9DSV9SRUdJU1RSWT1naGNyLmlv \
    -e CONFIG_CPUS=1.0 --cpus=1.0 --memory=900m \
    ghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/fitzroy-mini:v2025.1.0-6250

Note: Please set the PERSISTENT_VOLUME_DIR, EDGE_PORT, OCI_USERNAME, and OCI_PASSWORD environment variables.
Podman Run Command
podman run -v $PERSISTENT_VOLUME_DIR:/persist \
    -p $EDGE_PORT:8080 \
    -e OCI_USERNAME=$OCI_USERNAME \
    -e OCI_PASSWORD=$OCI_PASSWORD \
    -e PIPELINE_URL=ghcr.io/wallaroolabs/doc-samples/pipelines/edge-observability-pipeline:7b3c8209-0242-4458-99f2-aee9626c8a4c\
    -e EDGE_BUNDLE=ZXhwb3J0IEJVTkRMRV9WRVJTSU9OPTEKZXhwb3J0IENPTkZJR19DUFVTPTEKZXhwb3J0IEVER0VfTkFNRT1lZGdlLWNjZnJhdWQtb2JzZXJ2YWJpbGl0eS0wMgpleHBvcnQgT1BTQ0VOVEVSX0hPU1Q9ZG9jLXRlc3Qud2FsbGFyb29jb21tdW5pdHkubmluamEKZXhwb3J0IFBJUEVMSU5FX1VSTD1naGNyLmlvL3dhbGxhcm9vbGFicy9kb2Mtc2FtcGxlcy9waXBlbGluZXMvZWRnZS1vYnNlcnZhYmlsaXR5LXBpcGVsaW5lOjdiM2M4MjA5LTAyNDItNDQ1OC05OWYyLWFlZTk2MjZjOGE0YwpleHBvcnQgSk9JTl9UT0tFTj03MmViOWQyZi1mMzIwLTQ0ZjktOTI1OS05NWJmZDgyYjkwMjgKZXhwb3J0IE9DSV9SRUdJU1RSWT1naGNyLmlv \
    -e CONFIG_CPUS=1.0 --cpus=1.0 --memory=900m \
    ghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/fitzroy-mini:v2025.1.0-6250

Note: Please set the PERSISTENT_VOLUME_DIR, EDGE_PORT, OCI_USERNAME, and OCI_PASSWORD environment variables.
Helm Install Command
helm install --atomic $HELM_INSTALL_NAME \
    oci://ghcr.io/wallaroolabs/doc-samples/charts/edge-observability-pipeline \
    --namespace $HELM_INSTALL_NAMESPACE \
    --version 0.0.1-7b3c8209-0242-4458-99f2-aee9626c8a4c \
    --set ociRegistry.username=$OCI_USERNAME \
    --set ociRegistry.password=$OCI_PASSWORD \
    --set edgeBundle=ZXhwb3J0IEJVTkRMRV9WRVJTSU9OPTEKZXhwb3J0IENPTkZJR19DUFVTPTEKZXhwb3J0IEVER0VfTkFNRT1lZGdlLWNjZnJhdWQtb2JzZXJ2YWJpbGl0eS0wMgpleHBvcnQgT1BTQ0VOVEVSX0hPU1Q9ZG9jLXRlc3Qud2FsbGFyb29jb21tdW5pdHkubmluamEKZXhwb3J0IFBJUEVMSU5FX1VSTD1naGNyLmlvL3dhbGxhcm9vbGFicy9kb2Mtc2FtcGxlcy9waXBlbGluZXMvZWRnZS1vYnNlcnZhYmlsaXR5LXBpcGVsaW5lOjdiM2M4MjA5LTAyNDItNDQ1OC05OWYyLWFlZTk2MjZjOGE0YwpleHBvcnQgSk9JTl9UT0tFTj03MmViOWQyZi1mMzIwLTQ0ZjktOTI1OS05NWJmZDgyYjkwMjgKZXhwb3J0IE9DSV9SRUdJU1RSWT1naGNyLmlv

Note: Please set the HELM_INSTALL_NAME, HELM_INSTALL_NAMESPACE, OCI_USERNAME, and OCI_PASSWORD environment variables.
pipeline.list_edges()
IDNamePublish IDCreated AtTagsCPUsMemorySPIFFE ID
83e56ce3-335e-49bd-b0b6-2c93b8ac672dedge-ccfraud-observability-0132025-07-15T20:43:50.010771+00:00[]1.0900Miwallaroo.ai/ns/deployments/edge/83e56ce3-335e-49bd-b0b6-2c93b8ac672d
33e080fc-320a-4641-9abd-c4e1fc19f253edge-ccfraud-observability-0232025-07-15T20:43:50.449967+00:00[]1.0900Miwallaroo.ai/ns/deployments/edge/33e080fc-320a-4641-9abd-c4e1fc19f253

Remove Edge Location

Wallaroo Servers are removed with the wallaroo.pipeline_publish.remove_edge(name: string) method.

This returns a Publish Edge with the following fields:

FieldTypeDescription
idIntegerThe integer ID of the pipeline publish.
created_atDateTimeThe DateTime of the pipeline publish.
docker_run_variablesStringThe Docker variables in UUID format that include the following: The BUNDLE_VERSION, EDGE_NAME, JOIN_TOKEN_, OPSCENTER_HOST, PIPELINE_URL, and WORKSPACE_ID.
engine_configStringThe Wallaroo wallaroo.deployment_config.DeploymentConfig for the pipeline.
pipeline_version_idIntegerThe integer identifier of the pipeline version published.
statusStringThe status of the publish. Published is a successful publish.
updated_atDateTimeThe DateTime when the pipeline publish was updated.
user_imagesList(String)User images used in the pipeline publish.
created_byStringThe UUID of the Wallaroo user that created the pipeline publish.
engine_urlStringThe URL for the published pipeline’s Wallaroo engine in the OCI registry.
errorStringAny errors logged.
helmStringThe helm chart, helm reference and helm version.
pipeline_urlStringThe URL for the published pipeline’s container in the OCI registry.
pipeline_version_nameStringThe UUID identifier of the pipeline version published.
additional_propertiesStringAny other identities.

Two edge publishes will be created so we can demonstrate removing an edge shortly.

sample = pub.remove_edge(edge_01_name)
display(sample)
None
pipeline.list_edges()
IDNamePublish IDCreated AtTagsCPUsMemorySPIFFE ID
33e080fc-320a-4641-9abd-c4e1fc19f253edge-ccfraud-observability-0232025-07-15T20:43:50.449967+00:00[]1.0900Miwallaroo.ai/ns/deployments/edge/33e080fc-320a-4641-9abd-c4e1fc19f253

DevOps - Pipeline Edge Deployment

Once a pipeline is deployed to the Edge Registry service, it can be deployed in environments such as Docker, Kubernetes, or similar container running services by a DevOps engineer. For our example, we will use the docker run command output during the pipeline publish.

Edge Deployed Pipeline API Endpoints

Once deployed, we can check the pipelines and models available. We’ll use a curl command, but any HTTP based request will work the same way.

The endpoint /pipelines returns:

  • id (String): The name of the pipeline.
  • status (String): The status as either Running, or Error if there are any issues.

For this example, the deployment is made on a machine called localhost. Replace this URL with the URL of you edge deployment.

!curl testboy.local:8081/pipelines
{"pipelines":[{"id":"edge-observability-pipeline","version":"7b3c8209-0242-4458-99f2-aee9626c8a4c","status":"Running"}]}

The endpoint /models returns a List of models with the following fields:

  • name (String): The model name.
  • sha (String): The sha hash value of the ML model.
  • status (String): The status of either Running or Error if there are any issues.
  • version (String): The model version. This matches the version designation used by Wallaroo to track model versions in UUID format.
!curl testboy.local:8081/models
{"models":[{"sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52","name":"ccfraud-xgboost","version":"2e73dd1e-afaf-4bef-b790-939b2fb75290","status":"Running","model_version_id":23}]}

Edge Inference Endpoint

The inference endpoint takes the following pattern:

  • /pipelines/infer

Wallaroo inference endpoint URLs accept the following data inputs through the Content-Type header:

  • Content-Type: application/vnd.apache.arrow.file: For Apache Arrow tables.
  • Content-Type: application/json; format=pandas-records: For pandas DataFrame in record format.

Once deployed, we can perform an inference through the deployment URL.

The endpoint returns Content-Type: application/json; format=pandas-records by default with the following fields:

  • check_failures (List[Integer]): Whether any validation checks were triggered. For more information, see Wallaroo SDK Essentials Guide: Pipeline Management: Anomaly Testing.
  • elapsed (List[Integer]): A list of time in nanoseconds for:
    • [0] The time to serialize the input.
    • [1…n] How long each step took.
  • model_name (String): The name of the model used.
  • model_version (String): The version of the model in UUID format.
  • original_data: The original input data. Returns null if the input may be too long for a proper return.
  • outputs (List): The outputs of the inference result separated by data type, where each data type includes:
    • data: The returned values.
    • dim (List[Integer]): The dimension shape returned.
    • v (Integer): The vector shape of the data.
  • pipeline_name (String): The name of the pipeline.
  • shadow_data: Any shadow deployed data inferences in the same format as outputs.
  • time (Integer): The time since UNIX epoch.
!curl -X POST testboy.local:8081/pipelines/edge-observability-pipeline \
    -H "Content-Type: application/vnd.apache.arrow.file" \
    --data-binary @./data/cc_data_1k.arrow > curl_response_edge.df.json
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  808k  100  693k  100  114k  7451k  1229k --:--:-- --:--:-- --:--:--     0--:-- --:--:-- 8692k
# display the first 20 results

df_results = pd.read_json('./curl_response_edge.df.json', orient="records")
# display(df_results.head(20))
display(df_results.head(20).loc[:, ['time', 'out', 'metadata']])
timeoutmetadata
01752612299386{'variable': [1.0094898]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
11752612299386{'variable': [1.0094898]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
21752612299386{'variable': [1.0094898]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
31752612299386{'variable': [1.0094898]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
41752612299386{'variable': [-1.9073485999999998e-06]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
51752612299386{'variable': [-4.4882298e-05]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
61752612299386{'variable': [-9.36985e-05]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
71752612299386{'variable': [-8.3208084e-05]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
81752612299386{'variable': [-8.332728999999999e-05]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
91752612299386{'variable': [0.0004896521599999999]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
101752612299386{'variable': [0.0006609559]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
111752612299386{'variable': [7.57277e-05]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
121752612299386{'variable': [-0.000100553036]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
131752612299386{'variable': [-0.0005198717]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
141752612299386{'variable': [-3.695488e-06]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
151752612299386{'variable': [-0.00010883808]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
161752612299386{'variable': [-0.00017666817]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
171752612299386{'variable': [-2.8312206e-05]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
181752612299386{'variable': [2.1755695e-05]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
191752612299386{'variable': [-8.493661999999999e-05]}{'last_model': '{"model_name":"ccfraud-xgboost","model_sha":"054810e3e3ebbdd34438d9c1a08ed6a6680ef10bf97b9223f78ebf38e14b3b52"}', 'pipeline_version': '7b3c8209-0242-4458-99f2-aee9626c8a4c', 'elapsed': [4733989, 7567233], 'dropped': [], 'partition': 'edge-ccfraud-observability-02'}
pipeline.export_logs(
    limit=30000,
    directory='partition-edge-observability',
    file_prefix='edge-logs',
    dataset=['time', 'out', 'metadata']
)
# display the head 20 results

df_logs = pd.read_json('./partition-edge-observability/edge-logs-1.json', orient="records", lines=True)
# get just the partition
# df_results['partition'] = df_results['metadata'].map(lambda x: x['partition'])
# display(df_results.head(20))
display(df_logs.head(20).loc[:, ['time', 'out.variable', 'metadata.partition']])
timeout.variablemetadata.partition
01752612[0.00022277240000000002]engine-76bdf5f5d6-d299v
11752612[-3.23653e-05]engine-76bdf5f5d6-d299v
21752612[-6.00219e-05]engine-76bdf5f5d6-d299v
31752612[-0.0001828671]engine-76bdf5f5d6-d299v
41752612[-0.0001459122]engine-76bdf5f5d6-d299v
51752612[-5.90086e-05]engine-76bdf5f5d6-d299v
61752612[2.9623500000000002e-05]engine-76bdf5f5d6-d299v
71752612[-4.4703e-06]engine-76bdf5f5d6-d299v
81752612[0.0002200603]engine-76bdf5f5d6-d299v
91752612[0.00010135770000000001]engine-76bdf5f5d6-d299v
101752612[6.112460000000001e-05]engine-76bdf5f5d6-d299v
111752612[-5.9600000000000004e-08]engine-76bdf5f5d6-d299v
121752612[0.0005464554]engine-76bdf5f5d6-d299v
131752612[-9.84073e-05]engine-76bdf5f5d6-d299v
141752612[0.00014144180000000002]engine-76bdf5f5d6-d299v
151752612[-4.32134e-05]engine-76bdf5f5d6-d299v
161752612[-0.0001803637]engine-76bdf5f5d6-d299v
171752612[-4.5359100000000004e-05]engine-76bdf5f5d6-d299v
181752612[0.00020304320000000001]engine-76bdf5f5d6-d299v
191752612[5.22435e-05]engine-76bdf5f5d6-d299v
display(pd.unique(df_logs['metadata.partition']))
array(['engine-76bdf5f5d6-d299v', 'edge-ccfraud-observability-02'],
      dtype=object)