Edge and Multi-cloud Deployment and Inference
Pipeline Edge Deployment
Once a pipeline is deployed to the Edge Registry service, it can be deployed in environments such as Docker, Kubernetes, or similar container running services by a DevOps engineer.
Docker Deployment
Before starting, verify that the the Docker environment is able to connect to the artifact registry service.
For more details, check with the documentation on the artifact registry service. The following are provided for the three major cloud services:
- Set up authentication for Docker
- Authenticate with an Azure container registry
- Authenticating Amazon ECR Repositories for Docker CLI with Credential Helper
For the deployment, the engine URL is specified with the following environmental variables:
DEBUG(true|false): Whether to include debug output.OCI_REGISTRY: The URL of the registry service.CONFIG_CPUS: The number of CPUs to use. This applies to the inference engine only.The following options apply to the inference pipeline and the models assigned as pipeline steps.
gpus: Whether to allocate available gpus to the deployment. If no gpus are to be allocated, this options is not available. For more details on how to specify gpu resources based on the edge hardware configuration, see Docker Engine: Containers: Access an NVIDIA GPU For example, to allocate gpus to the inference pipeline:--gpus all
cpus: The fractional number of cpus to apply. For example:--cpus=1.25--cpus=2.0
memory: The amount of ram to allocate in unit values of:k: kilobytem: megabyteg: gigabyte
For example:
--memory=1536m--memory=512k
PIPELINE_URL: The published pipeline URL.EDGE_BUNDLE(Optional): The base64 encoded edge token and other values to connect to the Wallaroo Ops instance. This is used for edge management and transmitting inference results for observability. IMPORTANT NOTE: The token forEDGE_BUNDLEis valid for one deployment. Best practice is to use thePERSISTENT_VOLUME_DIRto store the authentication credentials between deployments. For subsequent deployments, generate a new edge location with its ownEDGE_BUNDLE.LOCAL_INFERENCE_STORAGE(Optional): Sets amount of storage to allocate for the edge deployments inference log storage capacity. This is in the format{size as number}{unit value}. The values are similar to the Kubernetes memory resource units format. If used, must be used withPLATEAU_PAGE_SIZE. The accepted unit values are:Ki(for KiloBytes)Mi(for MegaBytes)Gi(for GigaBytes)Ti(for TeraBytes)
PLATEAU_PAGE_SIZE(Optional): How many inference log rows to upload from the edge deployment at a time. Must be used withLOCAL_INFERENCE_STORAGE.
The following variables must be set by the user.
OCI_USERNAME: The edge registry username.OCI_PASSWORD: The edge registry password or token.EDGE_PORT: The external port used to connect to the edge endpoints.PERSISTENT_VOLUME_DIR(Only applies to edge deployments with edge locations): The location for the persistent volume used by the edge location to store session information, logs, etc.
The following example shows deploying models in an edge environment with the following resources allocated:
- Wallaroo inference engine:
- cpus: 1
- Inference Pipeline:
- cpus: 1.25
- memory: 1536m
- gpus: true
docker run \
-p $EDGE_PORT:8080 \
-e OCI_USERNAME=$OCI_USERNAME \
-e OCI_PASSWORD=$OCI_PASSWORD \
-e PIPELINE_URL=sample-pipeline-url \
-e CONFIG_CPUS=1.0 --gpus all --cpus=1.25 --memory=1536m \
sample-engine-url
Docker Deployment Example
Using our sample environment, here’s sample deployment using Docker with a computer vision ML model, the same used in the Wallaroo Use Case Tutorials Computer Vision: Retail tutorials.
Login through
dockerto confirm access to the registry service. First,docker login. For example, logging into the artifact registry with the token stored in the variabletok:cat $tok | docker login -u _json_key_base64 --password-stdin https://sample-registry.comThen deploy the Wallaroo published pipeline with an edge added to the pipeline publish through
docker run.IMPORTANT NOTE: Edge deployments with Edge Observability enabled with the
EDGE_BUNDLEoption include an authentication token that only authenticates once. To store the token long term, include the persistent volume flag-v {path to storage}setting.Deployment with
EDGE_BUNDLEfor observability.docker run -p 8080:8080 \ -v ./data:/persist \ -e DEBUG=true \ -e OCI_REGISTRY=$REGISTRYURL \ -e EDGE_BUNDLE=ZXhwb3J0IEJVTkRMRV9WRVJTSU9OPTEKZXhwb3J0IEVER0VfTkFNRT1lZGdlLWNjZnJhdWQtb2JzZXJ2YWJpbGl0eXlhaWcKZXhwb3J0IEpPSU5fVE9LRU49MjZmYzFjYjgtMjUxMi00YmU3LTk0ZGUtNjQ2NGI1MGQ2MzhiCmV4cG9ydCBPUFNDRU5URVJfSE9TVD1kb2MtdGVzdC5lZGdlLndhbGxhcm9vY29tbXVuaXR5Lm5pbmphCmV4cG9ydCBQSVBFTElORV9VUkw9Z2hjci5pby93YWxsYXJvb2xhYnMvZG9jLXNhbXBsZXMvcGlwZWxpbmVzL2VkZ2Utb2JzZXJ2YWJpbGl0eS1waXBlbGluZTozYjQ5ZmJhOC05NGQ4LTRmY2EtYWVjYy1jNzUyNTdmZDE2YzYKZXhwb3J0IFdPUktTUEFDRV9JRD03 \ -e CONFIG_CPUS=1 \ -e OCI_USERNAME=$REGISTRYUSERNAME \ -e OCI_PASSWORD=$REGISTRYPASSWORD \ -e PIPELINE_URL=ghcr.io/wallaroolabs/doc-samples/pipelines/edge-observability-pipeline:3b49fba8-94d8-4fca-aecc-c75257fd16c6 \ ghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/standalone-mini:v2023.4.0-main-4079Connection to the Wallaroo Ops instance from edge deployment with
EDGE_BUNDLEis verified with the long entryNode attestation was successful.Deployment without observability.
docker run -p 8080:8080 \ -e DEBUG=true \ -e OCI_REGISTRY=$REGISTRYURL \ -e CONFIG_CPUS=1 \ -e OCI_USERNAME=$REGISTRYUSERNAME \ -e OCI_PASSWORD=$REGISTRYPASSWORD \ -e PIPELINE_URL=ghcr.io/wallaroolabs/doc-samples/pipelines/edge-observability-pipeline:3b49fba8-94d8-4fca-aecc-c75257fd16c6 \ ghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/standalo
Docker Compose Deployment
For users who prefer to use docker compose, the following sample compose.yaml file is used to launch the Wallaroo Edge pipeline. This is the same used in the Wallaroo Use Case Tutorials Computer Vision: Retail tutorials. The volumes tag is used to preserve the login session from the one-time token generated as part of the EDGE_BUNDLE.
EDGE_BUNDLE is only required when adding an edge to a Wallaroo publish for observability. The following is deployed without observability.
services:
engine:
image: {Your Engine URL}
ports:
- 8080:8080
environment:
PIPELINE_URL: {Your Pipeline URL}
OCI_REGISTRY: {Your Edge Registry URL}
OCI_USERNAME: {Your Registry Username}
OCI_PASSWORD: {Your Token or Password}
CONFIG_CPUS: 4
The procedure is:
Login through
dockerto confirm access to the registry service. First,docker login. For example, logging into the artifact registry with the token stored in the variabletokto the registryus-west1-docker.pkg.dev:cat $tok | docker login -u _json_key_base64 --password-stdin https://sample-registry.comSet up the
compose.yamlfile.IMPORTANT NOTE: Edge deployments with Edge Observability enabled with the
EDGE_BUNDLEoption include an authentication token that only authenticates once. To store the token long term, include the persistent volume with thevolumes:tag.services: engine: image: sample-registry.com/engine:v2023.3.0-main-3707 ports: - 8080:8080 volumes: - ./data:/persist environment: PIPELINE_URL: sample-registry.com/pipelines/edge-cv-retail:bf70eaf7-8c11-4b46-b751-916a43b1a555 EDGE_BUNDLE: ZXhwb3J0IEJVTkRMRV9WRVJTSU9OPTEKZXhwb3J0IEVER0VfTkFNRT1lZGdlLWNjZnJhdWQtb2JzZXJ2YWJpbGl0eXlhaWcKZXhwb3J0IEpPSU5fVE9LRU49MjZmYzFjYjgtMjUxMi00YmU3LTk0ZGUtNjQ2NGI1MGQ2MzhiCmV4cG9ydCBPUFNDRU5URVJfSE9TVD1kb2MtdGVzdC5lZGdlLndhbGxhcm9vY29tbXVuaXR5Lm5pbmphCmV4cG9ydCBQSVBFTElORV9VUkw9Z2hjci5pby93YWxsYXJvb2xhYnMvZG9jLXNhbXBsZXMvcGlwZWxpbmVzL2VkZ2Utb2JzZXJ2YWJpbGl0eS1waXBlbGluZTozYjQ5ZmJhOC05NGQ4LTRmY2EtYWVjYy1jNzUyNTdmZDE2YzYKZXhwb3J0IFdPUktTUEFDRV9JRD03 OCI_REGISTRY: sample-registry.com OCI_USERNAME: _json_key_base64 OCI_PASSWORD: abc123 CONFIG_CPUS: 4Then deploy with
docker compose up.
Docker Compose Deployment Example
The deployment and undeployment is then just a simple docker compose up and docker compose down. The following shows an example of deploying the Wallaroo edge pipeline using docker compose.
docker compose up
[+] Running 1/1
✔ Container cv_data-engine-1 Recreated 0.5s
Attaching to cv_data-engine-1
cv_data-engine-1 | Wallaroo Engine - Standalone mode
cv_data-engine-1 | Login Succeeded
cv_data-engine-1 | Fetching manifest and config for pipeline: sample-registry.com/pipelines/edge-cv-retail:bf70eaf7-8c11-4b46-b751-916a43b1a555
cv_data-engine-1 | Fetching model layers
cv_data-engine-1 | digest: sha256:c6c8869645962e7711132a7e17aced2ac0f60dcdc2c7faa79b2de73847a87984
cv_data-engine-1 | filename: c6c8869645962e7711132a7e17aced2ac0f60dcdc2c7faa79b2de73847a87984
cv_data-engine-1 | name: resnet-50
cv_data-engine-1 | type: model
cv_data-engine-1 | runtime: onnx
cv_data-engine-1 | version: 693e19b5-0dc7-4afb-9922-e3f7feefe66d
cv_data-engine-1 |
cv_data-engine-1 | Fetched
cv_data-engine-1 | Starting engine
cv_data-engine-1 | Looking for preexisting `yaml` files in //modelconfigs
cv_data-engine-1 | Looking for preexisting `yaml` files in //pipelines
Podman Deployment
Wallaroo edge deployments can be made using Podman.
For the deployment, the engine URL is specified with the following environmental variables:
DEBUG(true|false): Whether to include debug output.OCI_REGISTRY: The URL of the registry service.CONFIG_CPUS: The number of CPUs to use. This applies to the inference engine only.The following options apply to the inference pipeline and the models assigned as pipeline steps.
gpus: Whether to allocate available gpus to the deployment. If no gpus are to be allocated, this options is not available. For more details on how to specify gpu resources based on the edge hardware configuration, see Docker Engine: Containers: Access an NVIDIA GPU For example, to allocate gpus to the inference pipeline:--gpus all
cpus: The fractional number of cpus to apply. For example:--cpus=1.25--cpus=2.0
memory: The amount of ram to allocate in unit values of:k: kilobytem: megabyteg: gigabyte
For example:
--memory=1536m--memory=512k
PIPELINE_URL: The published pipeline URL.EDGE_BUNDLE(Optional): The base64 encoded edge token and other values to connect to the Wallaroo Ops instance. This is used for edge management and transmitting inference results for observability. IMPORTANT NOTE: The token forEDGE_BUNDLEis valid for one deployment. For subsequent deployments, generate a new edge location with its ownEDGE_BUNDLE.LOCAL_INFERENCE_STORAGE(Optional): Sets amount of storage to allocate for the edge deployments inference log storage capacity. This is in the format{size as number}{unit value}. The values are similar to the Kubernetes memory resource units format. If used, must be used withPLATEAU_PAGE_SIZE. The accepted unit values are:Ki(for KiloBytes)Mi(for MegaBytes)Gi(for GigaBytes)Ti(for TeraBytes)
PLATEAU_PAGE_SIZE(Optional): How many inference log rows to upload from the edge deployment at a time. Must be used withLOCAL_INFERENCE_STORAGE.
The following variables must be set by the user.
OCI_USERNAME: The edge registry username.OCI_PASSWORD: The edge registry password or token.EDGE_PORT: The external port used to connect to the edge endpoints.PERSISTENT_VOLUME_DIR(Only applies to edge deployments with edge locations): The location for the persistent volume used by the edge location to store session information, logs, etc.
Podman Deployment Example
Using our sample environment, here’s sample deployment using Podman with a linear regression ML model, the same used in the Wallaroo Edge Observability with Wallaroo Assays tutorials.
Best practice is to login as the root user before running
podman. For example:sudo su-.Deploy the Wallaroo published pipeline with an edge added to the pipeline publish through
podman run.IMPORTANT NOTE: Edge deployments with Edge Observability enabled with the
EDGE_BUNDLEoption include an authentication token that only authenticates once. To store the token long term, include the persistent volume flag-v {path to storage}setting.Deployment with
EDGE_BUNDLEfor observability. This is for edge deployments with specific edge locations defined for observability. For more details, see Edge Observabilitypodman run -v $PERSISTENT_VOLUME_DIR:/persist \ -p $EDGE_PORT:8080 \ -e OCI_USERNAME=$OCI_USERNAME \ -e OCI_PASSWORD=$OCI_PASSWORD \ -e PIPELINE_URL=ghcr.io/wallaroolabs/doc-samples/pipelines/assay-demonstration-tutorial:1ff19772-f41f-42fb-b0d1-f82130bf5801\ -e EDGE_BUNDLE=ZXhwb3J0IEJVTkRMRV9WRVJTSU9OPTEKZXhwb3J0IENPTkZJR19DUFVTPTQKZXhwb3J0IEVER0VfTkFNRT1ob3VzZXByaWNlLWVkZ2UtZGVtb25zdHJhdGlvbi0wMgpleHBvcnQgT1BTQ0VOVEVSX0hPU1Q9ZG9jLXRlc3Qud2FsbGFyb29jb21tdW5pdHkubmluamEKZXhwb3J0IFBJUEVMSU5FX1VSTD1naGNyLmlvL3dhbGxhcm9vbGFicy9kb2Mtc2FtcGxlcy9waXBlbGluZXMvYXNzYXktZGVtb25zdHJhdGlvbi10dXRvcmlhbDoxZmYxOTc3Mi1mNDFmLTQyZmItYjBkMS1mODIxMzBiZjU4MDEKZXhwb3J0IEpPSU5fVE9LRU49YTQ0OGIyZjItNjgwYi00Y2ZiLThiMjItY2ZjNTI5MTk5ZjY5CmV4cG9ydCBPQ0lfUkVHSVNUUlk9Z2hjci5pbw== \ -e CONFIG_CPUS=4 --cpus=4.0 --memory=3g \ ghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/fitzroy-mini:v2025.1.0-6250Deployment without observability. This is for publishes that do not have a specific edge location defined.
podman run \ -p $EDGE_PORT:8080 \ -e OCI_USERNAME=$OCI_USERNAME \ -e OCI_PASSWORD=$OCI_PASSWORD \ -e PIPELINE_URL=ghcr.io/wallaroolabs/doc-samples/pipelines/assay-demonstration-tutorial:1ff19772-f41f-42fb-b0d1-f82130bf5801 \ -e CONFIG_CPUS=4 --cpus=4.0 --memory=3g \ ghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/fitzroy-mini:v2025.1.0-6250
Helm Deployment
Published pipelines can be deployed through the use of helm charts.
Helm deployments take up to two steps - the first step is in retrieving the required values.yaml and making updates to override.
IMPORTANT NOTE: Edge deployments with Edge Observability enabled with the EDGE_BUNDLE option include an authentication token that only authenticates once. Helm chart installations automatically add a persistent volume during deployment to store the authentication session data for future deployments.
Login to the registry service with
helm registry login. For example, if the token is stored in the variabletok:helm registry login sample-registry.com --username _json_key_base64 --password $tokPull the helm charts from the published pipeline. The two fields are the Helm Chart URL and the Helm Chart version to specify the OCI . This typically takes the format of:
helm pull oci://{published.helm_chart_url} --version {published.helm_chart_version}Extract the
tgzfile and copy thevalues.yamland copy the values used to edit engine allocations, etc. The following are required for the deployment to run:ociRegistry: registry: {your registry service} username: {registry username here} password: {registry token here}For Wallaroo Server deployments with edge location set, the values include
edgeBundleas generated when the edge was added to the pipeline publish.ociRegistry: registry: {your registry service} username: {registry username here} password: {registry token here} edgeBundle: abcdefg
Store this into another file, suc as local-values.yaml.
Create the namespace to deploy the pipeline to. For example, the namespace
wallaroo-edge-pipelinewould be:kubectl create -n wallaroo-edge-pipelineDeploy the
helminstallation withhelm installthrough one of the following options:Specify the
tgzfile that was downloaded and the local values file. For example:helm install --namespace {namespace} --values {local values file} {helm install name} {tgz path} --timeout 10m --wait --wait-for-jobsSpecify the expended directory from the downloaded
tgzfile.helm install --namespace {namespace} --values {local values file} {helm install name} {helm directory path} --timeout 10m --wait --wait-for-jobsSpecify the Helm Pipeline Helm Chart and the Pipeline Helm Version.
helm install --namespace {namespace} --values {local values file} {helm install name} oci://{published.helm_chart_url} --version {published.helm_chart_version} --timeout 10m --wait --wait-for-jobs
Once deployed, the DevOps engineer will have to forward the appropriate ports to the
svc/engine-svcservice in the specific pipeline. For example, usingkubectl port-forwardto the namespaceccfraudthat would be:kubectl port-forward svc/engine-svc -n ccfraud01 8080 --address 0.0.0.0`
Edge Deployment Endpoints
The following endpoints are available for API calls to the edge deployed pipeline.
List Pipelines
The endpoint GET /pipelines returns:
- id (String): The name of the pipeline.
- status (String): The status as either
Running, orErrorif there are any issues.
List Pipelines Example
curl localhost:8080/pipelines
{"pipelines":[{"id":"edge-cv-retail","status":"Running"}]}
List Models
The endpoint GET /models returns a List of models with the following fields:
- name (String): The model name.
- sha (String): The sha hash value of the ML model.
- status (String): The status of either Running or Error if there are any issues.
- version (String): The model version. This matches the version designation used by Wallaroo to track model versions in UUID format.
List Models Example
curl localhost:8080/models
{"models":[{"name":"resnet-50","sha":"c6c8869645962e7711132a7e17aced2ac0f60dcdc2c7faa79b2de73847a87984","status":"Running","version":"693e19b5-0dc7-4afb-9922-e3f7feefe66d"}]}
Edge Inference Endpoints
The inference endpoint takes the following patterns:
POST /infer: The static inference endpoint. If a model deployment is updated or a new pipeline publish replaces a previous one, the/inferendpoint always points to the current deployed pipeline. For more information, see Run Anywhere: In-Line Model Updates on Edge Devices.POST /pipelines/{pipeline-name}: Thepipeline-nameis the same as returned from the/pipelinesendpoint asid. This endpoint changes based on the pipeline publish deployed.
Organizations are encouraged to use the /infer endpoint for consistency.
Wallaroo inference endpoint URLs accept the following data inputs through the Content-Type header:
Content-Type: application/vnd.apache.arrow.file: For Apache Arrow tables.Content-Type: application/json; format=pandas-records: For pandas DataFrame in record format.
Once deployed, we can perform an inference through the deployment URL.
The endpoint returns Content-Type: application/json; format=pandas-records by default with the following fields:
- check_failures (List[Integer]): Whether any validation checks were triggered. For more information, see Wallaroo SDK Essentials Guide: Pipeline Management: Anomaly Testing.
- elapsed (List[Integer]): A list of time in nanoseconds for:
- [0] The time to serialize the input.
- [1…n] How long each step took.
- model_name (String): The name of the model used.
- model_version (String): The version of the model in UUID format.
- original_data: The original input data. Returns
nullif the input may be too long for a proper return. - outputs (List): The outputs of the inference result separated by data type, where each data type includes:
- data: The returned values.
- dim (List[Integer]): The dimension shape returned.
- v (Integer): The vector shape of the data.
- pipeline_name (String): The name of the pipeline.
- shadow_data: Any shadow deployed data inferences in the same format as outputs.
- time (Integer): The time since UNIX epoch.
Edge Inference Endpoint Example
The following example demonstrates sending an Apache Arrow table to the Edge deployed pipeline, requesting the inference results back in a pandas DataFrame records format.
curl -X POST localhost:8080/infer -H "Content-Type: application/vnd.apache.arrow.file" -H 'Accept: application/json; format=pandas-records' --data-binary @./data/image_224x224.arrow
Returns:
[{"check_failures":[],"elapsed":[1067541,21209776],"model_name":"resnet-50","model_version":"2e05e1d0-fcb3-4213-bba8-4bac13f53e8d","original_data":null,"outputs":[{"Int64":{"data":[535],"dim":[1],"v":1}},{"Float":{"data":[0.00009498586587142199,0.00009141524787992239,0.0004606838047038764,0.00007667174941161647,0.00008047101437114179,...],"dim":[1,1001],"v":1}}],"pipeline_name":"edge-cv-demo","shadow_data":{},"time":1694205578428}]
Log Retrieval from Edge Locations
Inference logs are retrieved from edge location deployments through the /logs endpoint. For full details on edge observability, see Model Observability for Edge Deployments with Low or No Connectivity.
- Endpoint:
/logs - Type:
POST - Headers:
Content-Type: application/json: Submissions to the/logsendpoint in JSON text format.Accept: application/json; format=pandas-records: The/logsendpoint returns JSON in pandas Record format.
- Parameters:
{}: An empty set.
Inference logs are returned as JSON in pandas Record Format with the following fields:
| Field | Type | Description |
|---|---|---|
| time | DateTime | DateTime field in Epoch format. |
| in | Dict | The inputs in Dict format. |
| out | Dict | The outputs in Dict format with the model field outputs and values. |
| anomaly | Dict | Any anomalies detected; the field count is reserved for the total number of validations derived as True. See anomalies for more details. |
| metadata | Dict | Metadata of the transaction that includes:
|
Edge location inference log storage capacity is set with the LOCAL_INFERENCE_STORAGE and PLATEAU_PAGE_SIZE fields. These fields are required for this endpoint to store the log data and response to requests.
LOCAL_INFERENCE_STORAGE(Optional): Sets amount of storage to allocate for the edge deployments inference log storage capacity. This is in the format{size as number}{unit value}. If used, must be used withPLATEAU_PAGE_SIZE. The values are similar to the Kubernetes memory resource units format. This is configurable based on the amount of storage needed during low/no connectivity periods before connectivity is restored for logs to be available in the Wallaroo model Ops center. The accepted unit values are:Ki(for KiloBytes)Mi(for MegaBytes)Gi(for GigaBytes)Ti(for TeraBytes)
PLATEAU_PAGE_SIZE(Optional): How many inference log rows to upload from the edge deployment at a time. Must be used withLOCAL_INFERENCE_STORAGE.
For example, a typical Docker deployment with these variable is:
docker run -v $PERSISTENT_VOLUME_DIR:/persist \
-p $EDGE_PORT:8080 \
-e OCI_USERNAME=$OCI_USERNAME \
-e OCI_PASSWORD=$OCI_PASSWORD \
-e PIPELINE_URL=ghcr.io/wallaroolabs/doc-samples/pipelines/edge-low-connection-demonstration:a8c50aab-5227-4a36-bb66-f34086ff65f4\
-e EDGE_BUNDLE=abc123 \
-e CONFIG_CPUS=1.0 --cpus=0.5 --memory=1g \
-e LOCAL_INFERENCE_STORAGE=100m \
-e PLATEAU_PAGE_SIZE=100 \
ghcr.io/wallaroolabs/doc-samples/engines/proxy/wallaroo/ghcr.io/wallaroolabs/fitzroy-mini:v2025.1.0-6250
Log Retrieval from Edge Locations Example
The following shows retrieving logs from a model deployment on an edge location.
We will store the logs to a JSON file in pandas Record format, then display the edge logs as a DataFrame.
!curl -X POST http://localhost:8080/logs \
-H "Content-Type: Content-Type: application/json; format=pandas-records" \
--data {} > ./edge-logs.df.json
df_logs = pd.read_json("./edge-logs.df.json", orient="records")
df_logs
| time | in | out | anomaly | metadata | |
|---|---|---|---|---|---|
| 0 | 1713880452318 | {'tensor': [4.0, 2.5, 2900.0, 5505.0, 2.0, 0.0, 0.0, 3.0, 8.0, 2900.0, 0.0, 47.6063, -122.02, 2970.0, 5251.0, 12.0, 0.0, 0.0]} | {'variable': [718013.7]} | {'count': 0} | {'last_model': '{"model_name":"rf-house-price-estimator","model_sha":"e22a0831aafd9917f3cc87a15ed267797f80e2afa12ad7d8810ca58f173b8cc6"}', 'pipeline_version': '76bec2c1-d93c-4941-b17b-3c6a6254d0b2', 'elapsed': [15654000, 17385666], 'dropped': [], 'partition': 'houseprice-low-connection-demonstration-01'} |
| 1 | 1713880461579 | {'tensor': [4.0, 2.75, 3010.0, 7215.0, 2.0, 0.0, 0.0, 3.0, 9.0, 3010.0, 0.0, 47.6952018738, -122.1780014038, 3010.0, 7215.0, 0.0, 0.0, 0.0]} | {'variable': [795841.06]} | {'count': 0} | {'last_model': '{"model_name":"rf-house-price-estimator","model_sha":"e22a0831aafd9917f3cc87a15ed267797f80e2afa12ad7d8810ca58f173b8cc6"}', 'pipeline_version': '76bec2c1-d93c-4941-b17b-3c6a6254d0b2', 'elapsed': [6297000, 12721000], 'dropped': [], 'partition': 'houseprice-low-connection-demonstration-01'} |
| 2 | 1713880461579 | {'tensor': [4.0, 1.75, 1400.0, 7920.0, 1.0, 0.0, 0.0, 3.0, 7.0, 1400.0, 0.0, 47.465801239, -122.1839981079, 1910.0, 7700.0, 52.0, 0.0, 0.0]} | {'variable': [267013.97]} | {'count': 0} | {'last_model': '{"model_name":"rf-house-price-estimator","model_sha":"e22a0831aafd9917f3cc87a15ed267797f80e2afa12ad7d8810ca58f173b8cc6"}', 'pipeline_version': '76bec2c1-d93c-4941-b17b-3c6a6254d0b2', 'elapsed': [6297000, 12721000], 'dropped': [], 'partition': 'houseprice-low-connection-demonstration-01'} |
| 3 | 1713880461579 | {'tensor': [4.0, 2.5, 3130.0, 13202.0, 2.0, 0.0, 0.0, 3.0, 10.0, 3130.0, 0.0, 47.5877990723, -121.9759979248, 2840.0, 10470.0, 19.0, 0.0, 0.0]} | {'variable': [879083.56]} | {'count': 0} | {'last_model': '{"model_name":"rf-house-price-estimator","model_sha":"e22a0831aafd9917f3cc87a15ed267797f80e2afa12ad7d8810ca58f173b8cc6"}', 'pipeline_version': '76bec2c1-d93c-4941-b17b-3c6a6254d0b2', 'elapsed': [6297000, 12721000], 'dropped': [], 'partition': 'houseprice-low-connection-demonstration-01'} |
| 4 | 1713880461579 | {'tensor': [3.0, 2.25, 1620.0, 997.0, 2.5, 0.0, 0.0, 3.0, 8.0, 1540.0, 80.0, 47.5400009155, -122.0260009766, 1620.0, 1068.0, 4.0, 0.0, 0.0]} | {'variable': [544392.06]} | {'count': 0} | {'last_model': '{"model_name":"rf-house-price-estimator","model_sha":"e22a0831aafd9917f3cc87a15ed267797f80e2afa12ad7d8810ca58f173b8cc6"}', 'pipeline_version': '76bec2c1-d93c-4941-b17b-3c6a6254d0b2', 'elapsed': [6297000, 12721000], 'dropped': [], 'partition': 'houseprice-low-connection-demonstration-01'} |
| ... | ... | ... | ... | ... | ... |
| 995 | 1713880461579 | {'tensor': [4.0, 2.5, 2040.0, 9225.0, 1.0, 0.0, 0.0, 5.0, 8.0, 1610.0, 430.0, 47.6360015869, -122.0970001221, 1730.0, 9225.0, 46.0, 0.0, 0.0]} | {'variable': [627853.3]} | {'count': 0} | {'last_model': '{"model_name":"rf-house-price-estimator","model_sha":"e22a0831aafd9917f3cc87a15ed267797f80e2afa12ad7d8810ca58f173b8cc6"}', 'pipeline_version': '76bec2c1-d93c-4941-b17b-3c6a6254d0b2', 'elapsed': [6297000, 12721000], 'dropped': [], 'partition': 'houseprice-low-connection-demonstration-01'} |
| 996 | 1713880461579 | {'tensor': [3.0, 3.0, 1330.0, 1379.0, 2.0, 0.0, 0.0, 4.0, 8.0, 1120.0, 210.0, 47.6125984192, -122.31300354, 1810.0, 1770.0, 9.0, 0.0, 0.0]} | {'variable': [450867.7]} | {'count': 0} | {'last_model': '{"model_name":"rf-house-price-estimator","model_sha":"e22a0831aafd9917f3cc87a15ed267797f80e2afa12ad7d8810ca58f173b8cc6"}', 'pipeline_version': '76bec2c1-d93c-4941-b17b-3c6a6254d0b2', 'elapsed': [6297000, 12721000], 'dropped': [], 'partition': 'houseprice-low-connection-demonstration-01'} |
| 997 | 1713880461579 | {'tensor': [3.0, 2.5, 1880.0, 4499.0, 2.0, 0.0, 0.0, 3.0, 8.0, 1880.0, 0.0, 47.5663986206, -121.9990005493, 2130.0, 5114.0, 22.0, 0.0, 0.0]} | {'variable': [553463.25]} | {'count': 0} | {'last_model': '{"model_name":"rf-house-price-estimator","model_sha":"e22a0831aafd9917f3cc87a15ed267797f80e2afa12ad7d8810ca58f173b8cc6"}', 'pipeline_version': '76bec2c1-d93c-4941-b17b-3c6a6254d0b2', 'elapsed': [6297000, 12721000], 'dropped': [], 'partition': 'houseprice-low-connection-demonstration-01'} |
| 998 | 1713880461579 | {'tensor': [4.0, 1.5, 1200.0, 10890.0, 1.0, 0.0, 0.0, 5.0, 7.0, 1200.0, 0.0, 47.342300415, -122.0879974365, 1250.0, 10139.0, 42.0, 0.0, 0.0]} | {'variable': [241330.17]} | {'count': 0} | {'last_model': '{"model_name":"rf-house-price-estimator","model_sha":"e22a0831aafd9917f3cc87a15ed267797f80e2afa12ad7d8810ca58f173b8cc6"}', 'pipeline_version': '76bec2c1-d93c-4941-b17b-3c6a6254d0b2', 'elapsed': [6297000, 12721000], 'dropped': [], 'partition': 'houseprice-low-connection-demonstration-01'} |
| 999 | 1713880461579 | {'tensor': [4.0, 3.25, 5180.0, 19850.0, 2.0, 0.0, 3.0, 3.0, 12.0, 3540.0, 1640.0, 47.5620002747, -122.1620025635, 3160.0, 9750.0, 9.0, 0.0, 0.0]} | {'variable': [1295531.8]} | {'count': 0} | {'last_model': '{"model_name":"rf-house-price-estimator","model_sha":"e22a0831aafd9917f3cc87a15ed267797f80e2afa12ad7d8810ca58f173b8cc6"}', 'pipeline_version': '76bec2c1-d93c-4941-b17b-3c6a6254d0b2', 'elapsed': [6297000, 12721000], 'dropped': [], 'partition': 'houseprice-low-connection-demonstration-01'} |
1000 rows × 5 columns
Edge Bundle One Time Token
When an edge is added to a pipeline publish, the field docker_run_variables contains a JSON value for edge devices to connect to the Wallaroo Ops instance.
The settings are stored in the key EDGE_BUNDLE as a base64 encoded value that include the following:
BUNDLE_VERSION: The current version of the bundled Wallaroo pipeline.EDGE_NAME: The edge name as defined when created and added to the pipeline publish.JOIN_TOKEN_: The one time authentication token for authenticating to the Wallaroo Ops instance.OPSCENTER_HOST: The hostname of the Wallaroo Ops edge service. See Edge Deployment Registry Guide for full details on enabling pipeline publishing and edge observability to Wallaroo.PIPELINE_URL: The OCI registry URL to the containerized pipeline.WORKSPACE_ID: The numerical ID of the workspace.
For example:
{'edgeBundle': 'ZXhwb3J0IEJVTkRMRV9WRVJTSU9OPTEKZXhwb3J0IEVER0VfTkFNRT14Z2ItY2NmcmF1ZC1lZGdlLXRlc3QKZXhwb3J0IEpPSU5fVE9LRU49MzE0OGFkYTUtMjg1YS00ZmNhLWIzYjgtYjUwYTQ4ZDc1MTFiCmV4cG9ydCBPUFNDRU5URVJfSE9TVD1kb2MtdGVzdC5lZGdlLndhbGxhcm9vY29tbXVuaXR5Lm5pbmphCmV4cG9ydCBQSVBFTElORV9VUkw9Z2hjci5pby93YWxsYXJvb2xhYnMvZG9jLXNhbXBsZXMvcGlwZWxpbmVzL2VkZ2UtcGlwZWxpbmU6ZjM4OGMxMDktOGQ1Ny00ZWQyLTk4MDYtYWExM2Y4NTQ1NzZiCmV4cG9ydCBXT1JLU1BBQ0VfSUQ9NQ=='}
base64 -D
ZXhwb3J0IEJVTkRMRV9WRVJTSU9OPTEKZXhwb3J0IEVER0VfTkFNRT14Z2ItY2NmcmF1ZC1lZGdlLXRlc3QKZXhwb3J0IEpPSU5fVE9LRU49MzE0OGFkYTUtMjg1YS00ZmNhLWIzYjgtYjUwYTQ4ZDc1MTFiCmV4cG9ydCBPUFNDRU5URVJfSE9TVD1kb2MtdGVzdC5lZGdlLndhbGxhcm9vY29tbXVuaXR5Lm5pbmphCmV4cG9ydCBQSVBFTElORV9VUkw9Z2hjci5pby93YWxsYXJvb2xhYnMvZG9jLXNhbXBsZXMvcGlwZWxpbmVzL2VkZ2UtcGlwZWxpbmU6ZjM4OGMxMDktOGQ1Ny00ZWQyLTk4MDYtYWExM2Y4NTQ1NzZiCmV4cG9ydCBXT1JLU1BBQ0VfSUQ9NQ==^D
export BUNDLE_VERSION=1
export EDGE_NAME=xgb-ccfraud-edge-test
export JOIN_TOKEN=3148ada5-285a-4fca-b3b8-b50a48d7511b
export OPSCENTER_HOST=doc-test.wallaroocommunity.ninja/edge
export PIPELINE_URL=ghcr.io/wallaroolabs/doc-samples/pipelines/edge-pipeline:f388c109-8d57-4ed2-9806-aa13f854576b
export WORKSPACE_ID=5
The JOIN_TOKEN is a one time access token. Once used, a JOIN_TOKEN expires. The authentication session data is stored in persistent volumes. Persistent volumes must be specified for docker and docker compose based deployments of Wallaroo pipelines; helm based deployments automatically provide persistent volumes to store authentication credentials.
The JOIN_TOKEN has the following time to live (TTL) parameters.
- Once created, the
JOIN_TOKENis valid for 24 hours. After it expires the edge will not be allowed to contact the OpsCenter the first time and a new edge bundle will have to be created. - After an Edge joins to Wallaroo Ops for the first time with persistent storage, the edge must contact the Wallaroo Ops instance at least once every 7 days.
- If this period is exceeded, the authentication credentials will expire and a new edge bundle must be created with a new and valid
JOIN_TOKEN.
- If this period is exceeded, the authentication credentials will expire and a new edge bundle must be created with a new and valid
Wallaroo edges require unique names. To create a new edge bundle with the same name:
- Use the Remove Edge to remove the edge by name.
- Use Add Edge to add the edge with the same name. A new
EDGE_BUNDLEis generated with a newJOIN_TOKEN.