Deploy Llama with Continuous Batching Using Native vLLM Framework and QAIC AI Acceleration
This tutorial and the assets can be downloaded as part of the Wallaroo Tutorials repository.
Deploy Llama with Continuous Batching Using Native vLLM Framework and QAIC AI Acceleration
The following tutorial demonstrates deploying the Llama LLM with the following enhancements:
- The Wallaroo Native vLLM Framework: Provide performance optimizations with framework configuration options.
- Continuous Batching: Configurable batch sizes balance latency and throughput use.
- QAIC AI Acceleration: x86 compatible architecture at low power with AI acceleration.
For access to these sample models and for a demonstration of how to use a LLM deployment with QAIC acceleration, continuous batching, and other features:
- Contact your Wallaroo Support Representative OR
- Schedule Your Wallaroo.AI Demo Today
Tutorial Goals
This tutorial demonstrates the following procedure:
- Upload a Llama LLM with:
- The Wallaroo Native vLLM runtime
- QAIC AI Acceleration enabled
- Framework configuration options to enhance performance
- Configure continuous batching as a model configuration option.
- Set a deployment configuration to allocate hardware resources and deploy the LLM.
- Perform sample inferences and show both the inference results and the inference result logs.
Prerequisites
- Wallaroo 2025.1 and above.
- A cluster with Qualcomm Cloud AI hardware.
Tutorial Steps
Import libraries
The first step is to import the Python libraries required, mainly the Wallaroo SDK.
import base64
import wallaroo
from wallaroo.deployment_config import DeploymentConfigBuilder
from wallaroo.framework import Framework
from wallaroo.engine_config import Acceleration
from wallaroo.object import EntityNotFoundError
from wallaroo.engine_config import QaicConfig
from wallaroo.framework import VLLMConfig
import pyarrow as pa
import pandas as pd
Connect to the Wallaroo Instance
Next connect to Wallaroo through the Wallaroo client. The Python library is included in the Wallaroo install and available through the Jupyter Hub interface provided with your Wallaroo environment.
This is accomplished using the wallaroo.Client()
command, which provides a URL to grant the SDK permission to your specific Wallaroo environment. When displayed, enter the URL into a browser and confirm permissions. Store the connection into a variable that can be referenced later.
If logging into the Wallaroo instance through the internal JupyterHub service, use wl = wallaroo.Client()
. For more information on Wallaroo Client settings, see the Client Connection guide.
wl = wallaroo.Client()
LLM Upload
Uploading the LLM takes the following steps:
- Define Schemas: The input and output schemas are defined in Apache PyArrow format. For this tutorial, they are converted to base64 strings used for uploading through the Wallaroo MLOps API.
- Upload the model via either the Wallaroo SDK or the Wallaroo MLOps API.
Define Schemas
The schemas are defined in Apache PyArrow format for the inputs and outputs.
input_schema = pa.schema([
pa.field('prompt', pa.string()),
pa.field('max_tokens', pa.int64()),
])
output_schema = pa.schema([
pa.field('generated_text', pa.string()),
pa.field('num_output_tokens', pa.int64())
])
Each is then converted to base64 strings that are later used for uploading via the Wallaroo MLops API.
base64.b64encode(
bytes(input_schema.serialize())
).decode("utf8")
base64.b64encode(
bytes(output_schema.serialize())
).decode("utf8")
Upload LLM
LLM uploads to Wallaroo are either via the Wallaroo SDK or the Wallaroo MLOps API.
The following demonstrates uploading the LLM via the SDK. In this example the QAIC acceleration configuration is defined. This is an optional step that fine tunes the QAIC AI Acceleration hardware performance to best fit the LLM.
qaic_config = QaicConfig(
num_devices=4,
full_batch_size=16,
ctx_len=256,
prefill_seq_len=128,
mxfp6_matmul=True,
mxint8_kv_cache=True
)
LLMs are uploaded with the Wallaroo SDK method wallaroo.client.Client.upload_model
. This this step, the following options are configured:
- The model name and file path.
- The framework, in this case the native vLLM runtime.
- The optional framework configuration, which sets specific options for the LLM’s performance.
- The input and output schemas.
- The hardware acceleration set to
wallaroo.engine_config.Acceleration.QAIC.with_config
. The additionwith_config
accepts the hardware configuration options.
llm = wl.upload_model(
"llama-31-8b-qaic",
"llama-31-8b.zip",
framework=Framework.VLLM,
framework_config=VLLMConfig(
max_num_seqs=16,
max_model_len=256,
max_seq_len_to_capture=128,
quantization="mxfp6",
kv_cache_dtype="mxint8",
gpu_memory_utilization=1
),
input_schema=input_schema,
output_schema=output_schema,
accel=Acceleration.QAIC.with_config(qaic_config)
)
Waiting for model loading - this will take up to 10min.
Model is pending loading to a container runtime..
Model is attempting loading to a container runtime......................................................................................................................................................................................................................................
Successful
Ready
The other upload option is the Wallaroo MLOps API endpoint v1/api/models/upload_and_convert
. For this option, the base64 converted input and output schemas are used, and the framework_config
and accel
options are specified in dict
format. Otherwise, the same parameters are set:
- The model name and file path.
- The
conversion
parameter which defines:- The framework as native vLLM
- The optional framework configuration, which sets specific options for the LLM’s performance.
- The input and output schemas set as base64 strings.
- the
accel
parameter which specifies the AI accelerator asqaic
with the additional hardware configuration options.
curl --progress-bar -X POST \
-H "Content-Type: multipart/form-data" \
-H "Authorization: Bearer <your-token-here>" \
-F 'metadata={"name": "vllm-llama-31-8b-qaic-new-v1", "visibility": "private", "workspace_id": 6, "conversion": {"framework": "vllm", "framework_config": {"framework": "vllm", "config":{"max_num_seqs": 16, "max_model_len": 256, "max_seq_len_to_capture": 128, "quantization": "mxfp6", "kv_cache_dtype": "mxint8", "gpu_memory_utilization": 1}}, "accel": {"qaic":{"num_devices":4,"full_batch_size": 16, "ctx_len": 256, "prefill_seq_len": 128, "mxfp6_matmul":true,"mxint8_kv_cache":true}}, "python_version": "3.8", "requirements": []}, "input_schema": "/////7AAAAAQAAAAAAAKAAwABgAFAAgACgAAAAABBAAMAAAACAAIAAAABAAIAAAABAAAAAIAAABUAAAABAAAAMT///8AAAECEAAAACQAAAAEAAAAAAAAAAoAAABtYXhfdG9rZW5zAAAIAAwACAAHAAgAAAAAAAABQAAAABAAFAAIAAYABwAMAAAAEAAQAAAAAAABBRAAAAAcAAAABAAAAAAAAAAGAAAAcHJvbXB0AAAEAAQABAAAAA==", "output_schema": "/////8AAAAAQAAAAAAAKAAwABgAFAAgACgAAAAABBAAMAAAACAAIAAAABAAIAAAABAAAAAIAAABcAAAABAAAALz///8AAAECEAAAACwAAAAEAAAAAAAAABEAAABudW1fb3V0cHV0X3Rva2VucwAAAAgADAAIAAcACAAAAAAAAAFAAAAAEAAUAAgABgAHAAwAAAAQABAAAAAAAAEFEAAAACQAAAAEAAAAAAAAAA4AAABnZW5lcmF0ZWRfdGV4dAAABAAEAAQAAAA="};type=application/json' \
-F "file=@llama-31-8b.zip;type=application/octet-stream" \
https://qaic-poc.pov.wallaroo.io/v1/api/models/upload_and_convert | cat
When the llm is uploaded, we retrieve it via the wallaroo.client.Client.get_model
for use in later steps.
llm = wl.get_model("llama-31-8b-qaic")
llm
Name | llama-31-8b-qaic |
Version | 0600dc44-c530-4425-a29d-9754406b0bb2 |
File Name | llama-31-8b.zip |
SHA | 62c338e77c031d7c071fe25e1d202fcd1ded052377a007ebd18cb63eadddf838 |
Status | ready |
Image Path | proxy.replicated.com/proxy/wallaroo/ghcr.io/wallaroolabs/mac-deploy-qaic-vllm:v2025.1.0-6196 |
Architecture | x86 |
Acceleration | {'qaic': {'ctx_len': 256, 'num_cores': 16, 'num_devices': 4, 'mxfp6_matmul': True, 'full_batch_size': 16, 'mxint8_kv_cache': True, 'prefill_seq_len': 128, 'aic_enable_depth_first': False}} |
Updated At | 2025-12-Jun 17:46:32 |
Workspace id | 9 |
Workspace name | younes@wallaroo.ai - Default Workspace |
Configure Continuous Batching
Continuous batching options are applied for the model configuration with the model.Model.configure
parameter. This method required both the input and output schemas, and the wallaroo.continuous_batching_config.ContinuousBatchingConfig
settings.
from wallaroo.continuous_batching_config import ContinuousBatchingConfig
cbc = ContinuousBatchingConfig(max_concurrent_batch_size = 100)
llm = llm.configure(input_schema=input_schema,output_schema=output_schema,continuous_batching_config = cbc)
Deploy the LLM
Deploying the LLM takes the following steps:
- Set the deployment configuration.
- Deploy the LLM with the deployment configuration.
Set the Deployment Configuration
The deployment configuration determines what hardware resources allocated for the LLMs exclusive use. The LLM options are set via the sidekick
options.
For this example, the deployment hardware includes a Qualcomm AI 100 and allocates the following resources:
- Replicas: 1 minimum, maximum 2. This provides scalability with additional replicas scaled up or down automatically based on resource usage.
- Cpus: 4
- RAM: 12 Gi
- gpus: 4
- For Wallaroo deployment configurations for QAIC, the
gpu
parameter specifies the number of System-on-Chips (SoCs) allocated.
- For Wallaroo deployment configurations for QAIC, the
- Deployment label: Specifies the node with the gpus.
# sidekick_gpus is the number Qualcomm AI 100 SOCs
deployment_config = DeploymentConfigBuilder() \
.replica_autoscale_min_max(minimum=1, maximum=2) \
.cpus(1).memory('1Gi') \
.sidekick_cpus(llm, 4) \
.sidekick_memory(llm, '12Gi') \
.sidekick_gpus(llm, 4) \
.deployment_label("kubernetes.io/os:linux") \
.scale_up_queue_depth(5) \
.autoscaling_window(600) \
.build()
The LLm is applied to a Wallaroo pipeline as a pipeline step. Once set, the pipeline is deployed with the deployment configuration. When the deployment is complete, the LLM is ready for inference requests.
pipeline = wl.build_pipeline("llama-31-qaic-yns1")
pipeline.clear()
pipeline.undeploy()
pipeline.add_model_step(llm)
pipeline.deploy(deployment_config=deployment_config)
pipeline.status()
{'status': 'Running',
'details': [],
'engines': [{'ip': '10.244.69.157',
'name': 'engine-f4bf767cd-hgffn',
'status': 'Running',
'reason': None,
'details': [],
'pipeline_statuses': {'pipelines': [{'id': 'llama-31-qaic-yns1',
'status': 'Running',
'version': 'bf637d55-0eca-4448-8417-8cf78570dc29'}]},
'model_statuses': {'models': [{'model_version_id': 62,
'name': 'llama-31-8b-qaic',
'sha': '62c338e77c031d7c071fe25e1d202fcd1ded052377a007ebd18cb63eadddf838',
'status': 'Running',
'version': '0600dc44-c530-4425-a29d-9754406b0bb2'}]}}],
'engine_lbs': [{'ip': '10.244.69.177',
'name': 'engine-lb-664c6d8455-zfb4b',
'status': 'Running',
'reason': None,
'details': []}],
'sidekicks': [{'ip': '10.244.69.160',
'name': 'engine-sidekick-llama-31-8b-qaic-62-5df4569fd5-nlhpm',
'status': 'Running',
'reason': None,
'details': [],
'statuses': '\n'}]}
Inference Examples
LLMs deployed in Wallaroo accept pandas DataFrames as inference inputs. This is submitted to the pipeline with the infer
method, and the results are received as a pandas DataFrame.
df = pd.DataFrame({"prompt": ["What is Wallaroo.AI?"], "max_tokens": [128]})
df.head()
prompt | max_tokens | |
---|---|---|
0 | What is Wallaroo.AI? | 128 |
pipeline.infer(df, timeout=600)
time | in.max_tokens | in.prompt | out.generated_text | out.num_output_tokens | anomaly.count | |
---|---|---|---|---|---|---|
0 | 2025-06-12 18:33:45.902 | 128 | What is Wallaroo.AI? | \nWallaroo.AI is a high-performance, scalable... | 128 | 0 |
The pipeline logs
method returns a pandas DataFrame showing the inputs and outputs of the inference request.
pipeline.logs()
time | in.max_tokens | in.prompt | out.generated_text | out.num_output_tokens | anomaly.count | |
---|---|---|---|---|---|---|
0 | 2025-06-12 18:33:45.902 | 128 | What is Wallaroo.AI? | \nWallaroo.AI is a high-performance, scalable... | 128 | 0 |
For access to these sample models and for a demonstration of how to use a LLM deployment with QAIC acceleration, continuous batching, and other features:
- Contact your Wallaroo Support Representative OR
- Schedule Your Wallaroo.AI Demo Today