Wallaroo SDK Essentials Guide: Model Uploads and Registrations: TensorFlow

How to upload and use TensorFlow ML Models with Wallaroo

Model Naming Requirements

Model names map onto Kubernetes objects, and must be DNS compliant. The strings for model names must be ASCII alpha-numeric characters or dash (-) only. . and _ are not allowed.

Wallaroo supports TensorFlow models by containerizing the model and running as an image.

Parameter Description
Web Site https://www.tensorflow.org/
Supported Libraries tensorflow==2.9.1
Framework Framework.TENSORFLOW aka tensorflow
Runtime Native aka tensorflow
Supported File Types SavedModel format as .zip file

TensorFlow File Format

TensorFlow models are .zip file of the SavedModel format. For example, the Aloha sample TensorFlow model is stored in the directory alohacnnlstm:

├── saved_model.pb
└── variables
    ├── variables.data-00000-of-00002
    ├── variables.data-00001-of-00002
    └── variables.index

This is compressed into the .zip file alohacnnlstm.zip with the following command:

zip -r alohacnnlstm.zip alohacnnlstm/

ML models that meet the Tensorflow and SavedModel format will run as Wallaroo Native runtimes by default.

See the SavedModel guide for full details.

Uploading TensorFlow Models

TensorFlow models are uploaded to Wallaroo through the Wallaroo Client upload_model method.

Upload TensorFlow Model Parameters

The following parameters are required for TensorFlow models. Tensorflow models are native runtimes in Wallaroo, so the input_schema and output_schema parameters are optional.

Parameter Type Description
name string (Required) The name of the model. Model names are unique per workspace. Models that are uploaded with the same name are assigned as a new version of the model.
path string (Required) The path to the model file being uploaded.
framework string (Required) Set as the Framework.TENSORFLOW.
input_schema pyarrow.lib.Schema (Optional) The input schema in Apache Arrow schema format.
output_schema pyarrow.lib.Schema (Optional) The output schema in Apache Arrow schema format.
convert_wait bool (Optional) (Default: True) Not required for native runtimes.
  • True: Waits in the script for the model conversion completion.
  • False: Proceeds with the script without waiting for the model conversion process to display complete.

Once the upload process starts, the model is containerized by the Wallaroo instance. This process may take up to 10 minutes.

Upload TensorFlow Model Return

For example, the following example is of uploading a TensorFlow ML Model to a Wallaroo instance.

from wallaroo.framework import Framework
model = wl.upload_model(model_name, 
                        model_file_name,
                        framework=Framework.TENSORFLOW
                        )

Pipeline Deployment Configurations

Pipeline configurations are dependent on whether the model is converted to the Native Runtime space, or Containerized Model Runtime space.

This model will always run in the native runtime space.

Native Runtime Pipeline Deployment Configuration Example

The following configuration allocates 0.25 CPU and 1 Gi RAM to the native runtime models for a pipeline.

deployment_config = DeploymentConfigBuilder()
                    .cpus(0.25)
                    .memory('1Gi')
                    .build()