Wallaroo SDK Essentials Guide: Model Uploads and Registrations: Hugging Face

How to upload and use Hugging Face ML Models with Wallaroo

Table of Contents

Model Naming Requirements

Model names map onto Kubernetes objects, and must be DNS compliant. The strings for model names must be lower case ASCII alpha-numeric characters or dash (-) only. . and _ are not allowed.

Wallaroo supports Hugging Face models by containerizing the model and running as an image.

ParameterDescription
Web Sitehttps://huggingface.co/models
Supported Libraries
  • transformers==4.34.1
  • diffusers==0.14.0
  • accelerate==0.23.0
  • torchvision==0.15.0
  • torch==2.0.0
FrameworksThe following Hugging Face pipelines are supported by Wallaroo.
  • Framework.HUGGING_FACE_FEATURE_EXTRACTION aka hugging-face-feature-extraction
  • Framework.HUGGING_FACE_IMAGE_CLASSIFICATION aka hugging-face-image-classification
  • Framework.HUGGING_FACE_IMAGE_SEGMENTATION aka hugging-face-image-segmentation
  • Framework.HUGGING_FACE_IMAGE_TO_TEXT aka hugging-face-image-to-text
  • Framework.HUGGING_FACE_OBJECT_DETECTION aka hugging-face-object-detection
  • Framework.HUGGING_FACE_QUESTION_ANSWERING aka hugging-face-question-answering
  • Framework.HUGGING_FACE_STABLE_DIFFUSION_TEXT_2_IMG aka hugging-face-stable-diffusion-text-2-img
  • Framework.HUGGING_FACE_SUMMARIZATION aka hugging-face-summarization
  • Framework.HUGGING_FACE_TEXT_CLASSIFICATION aka hugging-face-text-classification
  • Framework.HUGGING_FACE_TRANSLATION aka hugging-face-translation
  • Framework.HUGGING_FACE_ZERO_SHOT_CLASSIFICATION aka hugging-face-zero-shot-classification
  • Framework.HUGGING_FACE_ZERO_SHOT_IMAGE_CLASSIFICATION aka hugging-face-zero-shot-image-classification
  • Framework.HUGGING_FACE_ZERO_SHOT_OBJECT_DETECTION aka hugging-face-zero-shot-object-detection
  • Framework.HUGGING_FACE_SENTIMENT_ANALYSIS aka hugging-face-sentiment-analysis
  • Framework.HUGGING_FACE_TEXT_GENERATION aka hugging-face-text-generation
  • Framework.HUGGING_FACE_AUTOMATIC_SPEECH_RECOGNITION aka hugging-face-automatic-speech-recognition

During the model upload process, the Wallaroo instance will attempt to convert the model to a Native Wallaroo Runtime. If unsuccessful, a Wallaroo Containerized Runtime for the model is generated instead. See the model deployment section for details on how to configure pipeline resources based on the model’s runtime.

Hugging Face Schemas

Input and output schemas for each Hugging Face pipeline are defined below. Note that adding additional inputs not specified below will raise errors, except for the following:

  • Framework.HUGGING_FACE_IMAGE_TO_TEXT
  • Framework.HUGGING_FACE_TEXT_CLASSIFICATION
  • Framework.HUGGING_FACE_SUMMARIZATION
  • Framework.HUGGING_FACE_TRANSLATION

Additional inputs added to these Hugging Face pipelines will be added as key/pair value arguments to the model’s generate method. If the argument is not required, then the model will default to the values coded in the original Hugging Face model’s source code.

See the Hugging Face Pipeline documentation for more details on each pipeline and framework.

Wallaroo FrameworkReference
Framework.HUGGING_FACE_FEATURE_EXTRACTION

Schemas:

input_schema = pa.schema([
    pa.field('inputs', pa.string())
])
output_schema = pa.schema([
    pa.field('output', pa.list_(
        pa.list_(
            pa.float64(),
            list_size=128
        ),
    ))
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_IMAGE_CLASSIFICATION

Schemas:

input_schema = pa.schema([
    pa.field('inputs', pa.list_(
        pa.list_(
            pa.list_(
                pa.int64(),
                list_size=3
            ),
            list_size=100
        ),
        list_size=100
    )),
    pa.field('top_k', pa.int64()),
])

output_schema = pa.schema([
    pa.field('score', pa.list_(pa.float64(), list_size=2)),
    pa.field('label', pa.list_(pa.string(), list_size=2)),
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_IMAGE_SEGMENTATION

Schemas:

input_schema = pa.schema([
    pa.field('inputs', 
        pa.list_(
            pa.list_(
                pa.list_(
                    pa.int64(),
                    list_size=3
                ),
                list_size=100
            ),
        list_size=100
    )),
    pa.field('threshold', pa.float64()),
    pa.field('mask_threshold', pa.float64()),
    pa.field('overlap_mask_area_threshold', pa.float64()),
])

output_schema = pa.schema([
    pa.field('score', pa.list_(pa.float64())),
    pa.field('label', pa.list_(pa.string())),
    pa.field('mask', 
        pa.list_(
            pa.list_(
                pa.list_(
                    pa.int64(),
                    list_size=100
                ),
                list_size=100
            ),
    )),
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_IMAGE_TO_TEXT

Any parameter that is not part of the required inputs list will be forwarded to the model as a key/pair value to the underlying models generate method. If the additional input is not supported by the model, an error will be returned.

Schemas:

input_schema = pa.schema([
    pa.field('inputs', pa.list_( #required
        pa.list_(
            pa.list_(
                pa.int64(),
                list_size=3
            ),
            list_size=100
        ),
        list_size=100
    )),
    # pa.field('max_new_tokens', pa.int64()),  # optional
])

output_schema = pa.schema([
    pa.field('generated_text', pa.list_(pa.string())),
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_OBJECT_DETECTION

Schemas:

input_schema = pa.schema([
    pa.field('inputs', 
        pa.list_(
            pa.list_(
                pa.list_(
                    pa.int64(),
                    list_size=3
                ),
                list_size=100
            ),
        list_size=100
    )),
    pa.field('threshold', pa.float64()),
])

output_schema = pa.schema([
    pa.field('score', pa.list_(pa.float64())),
    pa.field('label', pa.list_(pa.string())),
    pa.field('box', 
        pa.list_( # dynamic output, i.e. dynamic number of boxes per input image, each sublist contains the 4 box coordinates 
            pa.list_(
                    pa.int64(),
                    list_size=4
                ),
            ),
    ),
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_QUESTION_ANSWERING

Schemas:

input_schema = pa.schema([
    pa.field('question', pa.string()),
    pa.field('context', pa.string()),
    pa.field('top_k', pa.int64()),
    pa.field('doc_stride', pa.int64()),
    pa.field('max_answer_len', pa.int64()),
    pa.field('max_seq_len', pa.int64()),
    pa.field('max_question_len', pa.int64()),
    pa.field('handle_impossible_answer', pa.bool_()),
    pa.field('align_to_words', pa.bool_()),
])

output_schema = pa.schema([
    pa.field('score', pa.float64()),
    pa.field('start', pa.int64()),
    pa.field('end', pa.int64()),
    pa.field('answer', pa.string()),
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_STABLE_DIFFUSION_TEXT_2_IMG

Schemas:

input_schema = pa.schema([
    pa.field('prompt', pa.string()),
    pa.field('height', pa.int64()),
    pa.field('width', pa.int64()),
    pa.field('num_inference_steps', pa.int64()), # optional
    pa.field('guidance_scale', pa.float64()), # optional
    pa.field('negative_prompt', pa.string()), # optional
    pa.field('num_images_per_prompt', pa.string()), # optional
    pa.field('eta', pa.float64()) # optional
])

output_schema = pa.schema([
    pa.field('images', pa.list_(
        pa.list_(
            pa.list_(
                pa.int64(),
                list_size=3
            ),
            list_size=128
        ),
        list_size=128
    )),
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_SUMMARIZATION

Any parameter that is not part of the required inputs list will be forwarded to the model as a key/pair value to the underlying models generate method. If the additional input is not supported by the model, an error will be returned.

Schemas:

input_schema = pa.schema([
    pa.field('inputs', pa.string()),
    pa.field('return_text', pa.bool_()),
    pa.field('return_tensors', pa.bool_()),
    pa.field('clean_up_tokenization_spaces', pa.bool_()),
    # pa.field('extra_field', pa.int64()), # every extra field you specify will be forwarded as a key/value pair
])

output_schema = pa.schema([
    pa.field('summary_text', pa.string()),
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_TEXT_CLASSIFICATION

Schemas

input_schema = pa.schema([
    pa.field('inputs', pa.string()),
    pa.field('top_k', pa.int64()),
    pa.field('function_to_apply', pa.string()),
])

output_schema = pa.schema([
    pa.field('label', pa.list_(pa.string(), list_size=2)), # list with a number of items same as top_k, list_size can be skipped but may lead in worse performance
    pa.field('score', pa.list_(pa.float64(), list_size=2)), # list with a number of items same as top_k, list_size can be skipped but may lead in worse performance
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_TRANSLATION

Any parameter that is not part of the required inputs list will be forwarded to the model as a key/pair value to the underlying models generate method. If the additional input is not supported by the model, an error will be returned.

Schemas:

input_schema = pa.schema([
    pa.field('inputs', pa.string()), # required
    pa.field('return_tensors', pa.bool_()), # optional
    pa.field('return_text', pa.bool_()), # optional
    pa.field('clean_up_tokenization_spaces', pa.bool_()), # optional
    pa.field('src_lang', pa.string()), # optional
    pa.field('tgt_lang', pa.string()), # optional
    # pa.field('extra_field', pa.int64()), # every extra field you specify will be forwarded as a key/value pair
])

output_schema = pa.schema([
    pa.field('translation_text', pa.string()),
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_ZERO_SHOT_CLASSIFICATION

Schemas:

input_schema = pa.schema([
    pa.field('inputs', pa.string()), # required
    pa.field('candidate_labels', pa.list_(pa.string(), list_size=2)), # required
    pa.field('hypothesis_template', pa.string()), # optional
    pa.field('multi_label', pa.bool_()), # optional
])

output_schema = pa.schema([
    pa.field('sequence', pa.string()),
    pa.field('scores', pa.list_(pa.float64(), list_size=2)), # same as number of candidate labels, list_size can be skipped by may result in slightly worse performance
    pa.field('labels', pa.list_(pa.string(), list_size=2)), # same as number of candidate labels, list_size can be skipped by may result in slightly worse performance
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_ZERO_SHOT_IMAGE_CLASSIFICATION

Schemas:

input_schema = pa.schema([
    pa.field('inputs', # required
        pa.list_(
            pa.list_(
                pa.list_(
                    pa.int64(),
                    list_size=3
                ),
                list_size=100
            ),
        list_size=100
    )),
    pa.field('candidate_labels', pa.list_(pa.string(), list_size=2)), # required
    pa.field('hypothesis_template', pa.string()), # optional
]) 

output_schema = pa.schema([
    pa.field('score', pa.list_(pa.float64(), list_size=2)), # same as number of candidate labels
    pa.field('label', pa.list_(pa.string(), list_size=2)), # same as number of candidate labels
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_ZERO_SHOT_OBJECT_DETECTION

Schemas:

input_schema = pa.schema([
    pa.field('images', 
        pa.list_(
            pa.list_(
                pa.list_(
                    pa.int64(),
                    list_size=3
                ),
                list_size=640
            ),
        list_size=480
    )),
    pa.field('candidate_labels', pa.list_(pa.string(), list_size=3)),
    pa.field('threshold', pa.float64()),
    # pa.field('top_k', pa.int64()), # we want the model to return exactly the number of predictions, we shouldn't specify this
])

output_schema = pa.schema([
    pa.field('score', pa.list_(pa.float64())), # variable output, depending on detected objects
    pa.field('label', pa.list_(pa.string())), # variable output, depending on detected objects
    pa.field('box', 
        pa.list_( # dynamic output, i.e. dynamic number of boxes per input image, each sublist contains the 4 box coordinates 
            pa.list_(
                    pa.int64(),
                    list_size=4
                ),
            ),
    ),
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_SENTIMENT_ANALYSISHugging Face Sentiment Analysis
Wallaroo FrameworkReference
Framework.HUGGING_FACE_TEXT_GENERATION

Any parameter that is not part of the required inputs list will be forwarded to the model as a key/pair value to the underlying models generate method. If the additional input is not supported by the model, an error will be returned.

input_schema = pa.schema([
    pa.field('inputs', pa.string()),
    pa.field('return_tensors', pa.bool_()), # optional
    pa.field('return_text', pa.bool_()), # optional
    pa.field('return_full_text', pa.bool_()), # optional
    pa.field('clean_up_tokenization_spaces', pa.bool_()), # optional
    pa.field('prefix', pa.string()), # optional
    pa.field('handle_long_generation', pa.string()), # optional
    # pa.field('extra_field', pa.int64()), # every extra field you specify will be forwarded as a key/value pair
])

output_schema = pa.schema([
    pa.field('generated_text', pa.list_(pa.string(), list_size=1))
])
Wallaroo FrameworkReference
Framework.HUGGING_FACE_AUTOMATIC_SPEECH_RECOGNITION

Sample input and output schema.

input_schema = pa.schema([
    pa.field('inputs', pa.list_(pa.float32())), # required: the audio stored in numpy arrays of shape (num_samples,) and data type `float32`
    pa.field('return_timestamps', pa.string()) # optional: return start & end times for each predicted chunk
]) 

output_schema = pa.schema([
    pa.field('text', pa.string()), # required: the output text corresponding to the audio input
    pa.field('chunks', pa.list_(pa.struct([('text', pa.string()), ('timestamp', pa.list_(pa.float32()))]))), # required (if `return_timestamps` is set), start & end times for each predicted chunk
])

Uploading Hugging Face Models

Hugging Face models are uploaded to Wallaroo through the Wallaroo Client upload_model method.

Upload Hugging Face Model Parameters

The following parameters are required for Hugging Face models. Note that while some fields are considered as optional for the upload_model method, they are required for proper uploading of a Hugging Face model to Wallaroo.

ParameterTypeDescription
namestring (Required)The name of the model. Model names are unique per workspace. Models that are uploaded with the same name are assigned as a new version of the model.
pathstring (Required)The path to the model file being uploaded.
frameworkstring (Required)Set as the framework - see the list above for all supported Hugging Face frameworks.
input_schemapyarrow.lib.Schema (Required)The input schema in Apache Arrow schema format.
output_schemapyarrow.lib.Schema (Required)The output schema in Apache Arrow schema format.
convert_waitbool (Optional) (Default: True)
  • True: Waits in the script for the model conversion completion.
  • False: Proceeds with the script without waiting for the model conversion process to display complete.
archwallaroo.engine_config.ArchitectureThe architecture the model is deployed to. If a model is intended for deployment to an ARM architecture, it must be specified during this step. Values include: X86 (Default): x86 based architectures. ARM: ARM based architectures.

Once the upload process starts, the model is containerized by the Wallaroo instance. This process may take up to 10 minutes.

Upload Hugging Face Model Return

upload_model returns a wallaroo.model_version.ModelVersion object with the following fields.

FieldTypeDescription
nameStringThe name of the model.
versionStringThe model version as a unique UUID.
file_nameStringThe file name of the model as stored in Wallaroo.
SHAStringThe hash value of the model file.
StatusStringThe status of the model.
image_pathStringThe image used to deploy the model in the Wallaroo engine.
last_update_timeDateTimeWhen the model was last updated.

Upload Hugging Face Model Example

The following example is of uploading a Hugging Face Zero Shot Classification ML Model to a Wallaroo instance.

input_schema = pa.schema([
    pa.field('inputs', pa.string()), # required
    pa.field('candidate_labels', pa.list_(pa.string(), list_size=2)), # required
    pa.field('hypothesis_template', pa.string()), # optional
    pa.field('multi_label', pa.bool_()), # optional
])

output_schema = pa.schema([
    pa.field('sequence', pa.string()),
    pa.field('scores', pa.list_(pa.float64(), list_size=2)), # same as number of candidate labels, list_size can be skipped by may result in slightly worse performance
    pa.field('labels', pa.list_(pa.string(), list_size=2)), # same as number of candidate labels, list_size can be skipped by may result in slightly worse performance
])

model = wl.upload_model("hf-zero-shot-classification",
                       "./models/model-auto-conversion_hugging-face_dummy-pipelines_zero-shot-classification-pipeline.zip",
                        framework=Framework.HUGGING_FACE_ZERO_SHOT_CLASSIFICATION,
                        input_schema=input_schema,
                        output_schema=output_schema,
                        convert_wait=True)

Waiting for model loading - this will take up to 10.0min.
Model is pending loading to a container runtime..
Model is attempting loading to a container runtime................................................successful

Ready