Wallaroo SDK Essentials Guide: Inference Management
Table of Contents
Inference Requests Via the Wallaroo SDK
Inferences are performed on deployed pipelines. This submits data to the pipeline, where it is processed through each of the pipeline’s steps with the output of the previous step providing the input for the next step. The final step will then output the result of all of the pipeline’s steps.
- Inputs are either sent one of the following:
- pandas.DataFrame. The return value will be a pandas.DataFrame.
- Apache Arrow (Preferred). The return value will be an Apache Arrow table.
Apache Arrow is the recommended method of data inputs for inferences. Wallaroo inference data is based on Apache Arrow, which will return the fastest inference results and smaller data transfer amounts on average than JSON or DataFrame tables. Arrow tables also specify the data types used in their schema, insuring that the data sent and receives are exactly what is required. Using pandas DataFrame requires inferring the data type which may lead to data type mismatch issues.
For a complete example of using the Wallaroo SDK for inferencing, see the Wallaroo SDK Inference Tutorial.
Run Inference through Local Variable
The pipeline infer(data, timeout, dataset, dataset_exclude, dataset_separator)
method performs an inference as defined by the pipeline steps and takes the following arguments:
- data (REQUIRED): The data submitted to the pipeline for inference. The following data inputs are supported:
- pandas.DataFrame: Data submitted as a pandas DataFrame are returned as a pandas DataFrame. For models that output one column based on the models outputs.
- Apache Arrow (Preferred): Data submitted as an Apache Arrow are returned as an Apache Arrow.
- timeout (OPTIONAL): A timeout in seconds before the inference throws an exception. The default is 15 second per call to accommodate large, complex models. Note that for a batch inference, this is per call - with 10 inference requests, each would have a default timeout of 15 seconds.
- dataset (OPTIONAL): The datasets to be returned. The datasets available are:
*
: Default. This translates to["time", "in", "out", "anomaly"]
.time
: The DateTime of the inference request.in
: All inputs listed asin_{variable_name}
.out
: All outputs listed asout_variable_name
.anomaly
: Flags whether an Anomaly was detected. Anomalies are detected from each pipeline validation returnedTrue
. For full details, see Wallaroo SDK Essentials Guide: Anomaly Detection. The following fields are included in this dataset.count
The number of anomalies detected as an integer. Each pipeline validation the returnsTrue
adds to the number of anomalies detected.{validation name}
: Each pipeline validation added to the pipeline is returned as the fieldanomaly.{validation name}
. Validations that returnTrue
indicate an anomaly detected based on the validation expression, whileFalse
indicates no anomaly found for the validation.
metadata
: IMPORTANT NOTE: See Metadata Requests Restrictions for specifications on how to themetadata
dataset requests in combination with other fields.- Returns in the
metadata.elapsed
field:- A list of time in nanoseconds for:
- The time to serialize the input.
- How long each step took.
- A list of time in nanoseconds for:
- Returns in the
metadata.last_model
field:- A dict with each Python step as:
model_name
: The name of the model in the pipeline step.model_sha
: The sha hash of the model in the pipeline step.
- Returns in the
metadata.pipeline_version
field:- The pipeline version as a UUID value.
- Returns in the
metadata.partition
:- The partition used to store the inference results from this pipeline. This is mainly used when adding Wallaroo Server edge deployments to a published pipeline and separating the inference results from those edge deployments. See Wallaroo SDK Essentials Guide: Pipeline Edge Publication: Edge Observability for full details.
- Returns in the
metadata.elapsed
: See Metadata Requests Restrictions for specifications on how to usemeta
ormetadata
dataset requests in combination with other fields.- Returns in the
metadata.elapsed
field:- A list of time in nanoseconds for:
- The time to serialize the input.
- How long each step took.
- A list of time in nanoseconds for:
- Returns in the
- dataset_exclude (OPTIONAL): Allows users to exclude parts of the dataset.
- dataset_separator (OPTIONAL): Allows other types of dataset separators to be used. If set to “.”, the returned dataset will be flattened.
Outputs of the inference are based on the model’s outputs as out.{model_output}
. This model only has one output - dense_1
, which is listed in the out.dense_1
column. If the model has multiple outputs, they would be listed as out.output1
, out.output2
, etc.
pipeline.infer metadata.elapsed Format
The inference result field metadata.elapsed
format changes depending on the input type.
- pandas DataFrame: If the inference request is in pandas Record format,
metadata.elapsed
is returned as an int. - Apache Arrow: If the inference request is an Apache Arrow table,
metadata.elapsed
is returned aspyarrow.Int64
.
The following code is provided to convert metadata.elapsed
into the same format for consistency.
import pyarrow as pa
if input_type == "json":
parse_elapsed += results["metadata.elapsed"][0][0]
inference_elapsed += results["metadata.elapsed"][0][1]
elif input_type == "arrow":
parse_elapsed += results["metadata.elapsed"][0][0].as_py()
inference_elapsed += results["metadata.elapsed"][0][1].as_py()
else:
assert False, f"Bad input type {input_type}"
pipeline.infer metadata.elapsed Format Examples
The following demonstrates the differences between the metadata.elasped
field from a DataFrame based inference request vs an Apache Arrow table inference request.
- Apache Arrow based inference request.
result_arrow = ccfraud_pipeline.infer_from_file('./data/cc_data_10k.arrow', dataset="metadata")
# unconverted raw data from Arrow table inference
# time to parse input data
display(result_arrow["metadata.elapsed"][0][0])
# time to inference from parsed input data
display(result_arrow["metadata.elapsed"][0][1])
<pyarrow.UInt64Scalar: 1253219>
<pyarrow.UInt64Scalar: 1275320>
parse_elapsed = result_arrow["metadata.elapsed"][0][0].as_py()
display(f'Time to parse input data: {parse_elapsed}')
'Time to parse input data: 1253219'
display(f'Time to inference from parsed data: {result_arrow["metadata.elapsed"][0][0]}')
'Time to inference from parsed data: 1253219'
- pandas DataFrame based inference request
# no conversion needed for pandas DataFrame
result_dataframe = ccfraud_pipeline.infer_from_file('./data/cc_data_10k.df.json', dataset=["*", "metadata"])
result_dataframe = ccfraud_pipeline.infer_from_file('./data/cc_data_10k.df.json', dataset=["*", "metadata"])
display(f"Time to parse input data: {result_dataframe['metadata.elapsed'][0][0]}")
display(f"Time to inference from parsed data: {result_dataframe['metadata.elapsed'][0][1]}")
'Time to parse input data: 51879691'
'Time to inference from parsed data: 2310435'
Run Inference Through Local Variable Example
The following example is an inference request using an Apache Arrow table. The inference result is returned as an Apache Arrow table, which is then converted into a Pandas DataFrame and a Polars DataFrame, with the results filtered based on results greater than 0.75.
result = ccfraud_pipeline.infer(ccfraud_input_1k_arrow_table)
display(result)
pyarrow.Table
time: timestamp[ms]
in.tensor: list<item: float> not null
child 0, item: float
out.dense_1: list<inner: float not null> not null
child 0, inner: float not null
anomaly.count: int8
----
time: [[2023-03-20 18:55:09.562,2023-03-20 18:55:09.562,2023-03-20 18:55:09.562,2023-03-20 18:55:09.562,2023-03-20 18:55:09.562,...,2023-03-20 18:55:09.562,2023-03-20 18:55:09.562,2023-03-20 18:55:09.562,2023-03-20 18:55:09.562,2023-03-20 18:55:09.562]]
in.tensor: [[[-1.0603298,2.3544967,-3.5638788,5.138735,-1.2308457,...,0.038412016,1.0993439,1.2603409,-0.14662448,-1.4463212],[-1.0603298,2.3544967,-3.5638788,5.138735,-1.2308457,...,0.038412016,1.0993439,1.2603409,-0.14662448,-1.4463212],...,[0.49511018,-0.24993694,0.4553345,0.92427504,-0.36435103,...,1.1117147,-0.566654,0.12122019,0.06676402,0.6583282],[0.61188054,0.1726081,0.43105456,0.50321484,-0.27466634,...,0.30260187,0.081211455,-0.15578508,0.017189292,-0.7236631]]]
out.dense_1: [[[0.99300325],[0.99300325],...,[0.0008533001],[0.0012498498]]]
anomaly.count: [[0,0,0,0,0,...,0,0,0,0,0]]
import pyarrow as pa
list = [0.75]
outputs = result.to_pandas()
# display(outputs)
filter = [elt[0] > 0.75 for elt in outputs['out.dense_1']]
outputs = outputs.loc[filter]
display(outputs)
  | time | in.tensor | out.dense_1 | anomaly.count |
---|---|---|---|---|
0 | 2023-03-20 18:55:09.562 | [-1.0603298, 2.3544967, -3.5638788, 5.138735, -1.2308457, -0.76878244, -3.5881228, 1.8880838, -3.2789674, -3.9563255, 4.099344, -5.653918, -0.8775733, -9.131571, -0.6093538, -3.7480276, -5.0309124, -0.8748149, 1.9870535, 0.7005486, 0.9204423, -0.10414918, 0.32295644, -0.74181414, 0.038412016, 1.0993439, 1.2603409, -0.14662448, -1.4463212] | [0.99300325] | 0 |
1 | 2023-03-20 18:55:09.562 | [-1.0603298, 2.3544967, -3.5638788, 5.138735, -1.2308457, -0.76878244, -3.5881228, 1.8880838, -3.2789674, -3.9563255, 4.099344, -5.653918, -0.8775733, -9.131571, -0.6093538, -3.7480276, -5.0309124, -0.8748149, 1.9870535, 0.7005486, 0.9204423, -0.10414918, 0.32295644, -0.74181414, 0.038412016, 1.0993439, 1.2603409, -0.14662448, -1.4463212] | [0.99300325] | 0 |
2 | 2023-03-20 18:55:09.562 | [-1.0603298, 2.3544967, -3.5638788, 5.138735, -1.2308457, -0.76878244, -3.5881228, 1.8880838, -3.2789674, -3.9563255, 4.099344, -5.653918, -0.8775733, -9.131571, -0.6093538, -3.7480276, -5.0309124, -0.8748149, 1.9870535, 0.7005486, 0.9204423, -0.10414918, 0.32295644, -0.74181414, 0.038412016, 1.0993439, 1.2603409, -0.14662448, -1.4463212] | [0.99300325] | 0 |
3 | 2023-03-20 18:55:09.562 | [-1.0603298, 2.3544967, -3.5638788, 5.138735, -1.2308457, -0.76878244, -3.5881228, 1.8880838, -3.2789674, -3.9563255, 4.099344, -5.653918, -0.8775733, -9.131571, -0.6093538, -3.7480276, -5.0309124, -0.8748149, 1.9870535, 0.7005486, 0.9204423, -0.10414918, 0.32295644, -0.74181414, 0.038412016, 1.0993439, 1.2603409, -0.14662448, -1.4463212] | [0.99300325] | 0 |
161 | 2023-03-20 18:55:09.562 | [-9.716793, 9.174981, -14.450761, 8.653825, -11.039951, 0.6602411, -22.825525, -9.919395, -8.064324, -16.737926, 4.852197, -12.563343, -1.0762653, -7.524591, -3.2938414, -9.62102, -15.6501045, -7.089741, 1.7687134, 5.044906, -11.365625, 4.5987034, 4.4777045, 0.31702697, -2.2731977, 0.07944675, -10.052058, -2.024108, -1.0611985] | [1.0] | 0 |
941 | 2023-03-20 18:55:09.562 | [-0.50492376, 1.9348029, -3.4217603, 2.2165704, -0.6545315, -1.9004827, -1.6786858, 0.5380051, -2.7229102, -5.265194, 3.504164, -5.4661765, 0.68954825, -8.725291, 2.0267954, -5.4717045, -4.9123807, -1.6131229, 3.8021576, 1.3881834, 1.0676425, 0.28200775, -0.30759808, -0.48498034, 0.9507336, 1.5118006, 1.6385275, 1.072455, 0.7959132] | [0.9873102] | 0 |
import polars as pl
outputs = pl.from_arrow(result)
display(outputs.filter(pl.col("out.dense_1").apply(lambda x: x[0]) > 0.75))
time | in.tensor | out.dense_1 | anomaly.count |
---|---|---|---|
datetime[ms] | list[f32] | list[f32] | i8 |
2023-03-20 18:55:09.562 | [-1.06033, 2.354497, … -1.446321] | [0.993003] | 0 |
2023-03-20 18:55:09.562 | [-1.06033, 2.354497, … -1.446321] | [0.993003] | 0 |
2023-03-20 18:55:09.562 | [-1.06033, 2.354497, … -1.446321] | [0.993003] | 0 |
2023-03-20 18:55:09.562 | [-1.06033, 2.354497, … -1.446321] | [0.993003] | 0 |
2023-03-20 18:55:09.562 | [-9.716793, 9.174981, … -1.061198] | [1.0] | 0 |
2023-03-20 18:55:09.562 | [-0.504924, 1.934803, … 0.795913] | [0.98731] | 0 |
Metadata Requests Restrictions
The following restrictions are in place when requesting the datasets metadata
or metadata.elapsed
.
Standard Pipeline Steps
For the following Pipeline steps, metadata
or metadata.elapsed
must be requested with the *
parameter. For example:
result = mainpipeline.infer(normal_input, dataset=["*", "metadata.elapsed"])
Effected pipeline steps:
add_model_step
replace_with_model_step
Testing Pipeline Steps
For the following Pipeline steps, meta
or metadata.elapsed
can not be included with the *
parameter. For example:
result = mainpipeline.infer(normal_input, dataset=["metadata.elapsed"])
Effected pipeline steps:
add_random_split
replace_with_random_split
add_shadow_deploy
replace_with_shadow_deploy
Numpy Arrays as Inputs
Numpy arrays can be submitted as an input by containing it within a DataFrame. In this example, the input column is tensor
, but can whatever the model expects.
dataframedata = pd.DataFrame({"tensor":[npArray]})
This bypasses the need to convert the npArray to a List - the object itself can be embedded into the DataFrame table and submitted. For this example, a DataFrame with the column tensor
that contains a numpy array will be submitted as an inference, and from the return only the column out.2519
will be displayed.
infResults = pipeline.infer(dataframedata, dataset=["*", "metadata.elapsed"])
display(infResults.loc[0]["out.2519"])
[44,
44,
44,
44,
82,
44,
44,
44,
44,
44,
44,
44,
44,
44,
44,
44,
44,
44,
44,
84,
84,
44,
84,
44,
44,
44,
61,
44,
86,
44,
44]
Run Inference From A File
To submit a data file directly to a pipeline, use the pipeline infer_from_file(data, timeout, dataset, dataset_exclude, dataset_separator)
method. This performs an inference as defined by the pipeline steps and takes the following arguments:
- data (REQUIRED): The name of the file submitted to the pipeline for inference.
- pandas.DataFrame: Data submitted as a pandas DataFrame are returned as a pandas DataFrame. For models that output one column based on the models outputs.
- Apache Arrow (Preferred): Data submitted as an Apache Arrow are returned as an Apache Arrow.
- timeout (OPTIONAL): A timeout in seconds before the inference throws an exception. The default is 15 second per call to accommodate large, complex models. Note that for a batch inference, this is per call - with 10 inference requests, each would have a default timeout of 15 seconds. Inferences sent in a batch rather than individual inference requests are processed faster.
- dataset (OPTIONAL): The datasets to be returned. By default this is set to ["*"] which returns, [“time”, “in”, “out”, “anomaly”].
- dataset (OPTIONAL): The datasets to be returned. The datasets available are:
*
: Default. This translates to["time", "in", "out", "anomaly"]
.time
: The DateTime of the inference request.in
: All inputs listed asin_{variable_name}
.out
: All outputs listed asout_variable_name
.anomaly
: Flags whether an Anomaly was detected. Anomalies are detected from each pipeline validation returnedTrue
. For full details, see Wallaroo SDK Essentials Guide: Anomaly Detection. The following fields are included in this dataset.count
The number of anomalies detected as an integer. Each pipeline validation the returnsTrue
adds to the number of anomalies detected.{validation name}
: Each pipeline validation added to the pipeline is returned as the fieldanomaly.{validation name}
. Validations that returnTrue
indicate an anomaly detected based on the validation expression, whileFalse
indicates no anomaly found for the validation.
meta
:- Returns in the
metadata.elapsed
field:- A list of time in nanoseconds for:
- The time to serialize the input.
- How long each step took.
- A list of time in nanoseconds for:
- Returns in the
metadata.elapsed
:- Returns in the
metadata.elapsed
field:- A list of time in nanoseconds for:
- The time to serialize the input.
- How long each step took.
- A list of time in nanoseconds for:
- Returns in the
metadata.last_model
field:- A dict with each Python step as:
model_name
: The name of the model in the pipeline step.model_sha
: The sha hash of the model in the pipeline step.
- Returns in the
- dataset_exclude (OPTIONAL): Allows users to exclude parts of the dataset.
- dataset_separator (OPTIONAL): Allows other types of dataset separators to be used. If set to “.”, the returned dataset will be flattened.
pipeline.infer_from_file metadata.elapsed Format
The inference result field metadata.elapsed
format changes depending on the input type.
- pandas DataFrame: If the inference request is in pandas Record format,
metadata.elapsed
is returned as an int. - Apache Arrow: If the inference request is an Apache Arrow table,
metadata.elapsed
is returned aspyarrow.Int64
.
The following code is provided to convert metadata.elapsed
into the same format for consistency.
import pyarrow as pa
if input_type == "json":
parse_elapsed += results["metadata.elapsed"][0][0]
inference_elapsed += results["metadata.elapsed"][0][1]
elif input_type == "arrow":
parse_elapsed += results["metadata.elapsed"][0][0].as_py()
inference_elapsed += results["metadata.elapsed"][0][1].as_py()
else:
assert False, f"Bad input type {input_type}"
pipeline.infer_from_file metadata.elapsed Format Examples
The following demonstrates the differences between the metadata.elasped
field from a DataFrame based inference request vs an Apache Arrow table inference request.
- Apache Arrow based inference request.
result_arrow = ccfraud_pipeline.infer_from_file('./data/cc_data_10k.arrow', dataset="metadata")
# unconverted raw data from Arrow table inference
# time to parse input data
display(result_arrow["metadata.elapsed"][0][0])
# time to inference from parsed input data
display(result_arrow["metadata.elapsed"][0][1])
<pyarrow.UInt64Scalar: 1253219>
<pyarrow.UInt64Scalar: 1275320>
parse_elapsed = result_arrow["metadata.elapsed"][0][0].as_py()
display(f'Time to parse input data: {parse_elapsed}')
'Time to parse input data: 1253219'
display(f'Time to inference from parsed data: {result_arrow["metadata.elapsed"][0][0]}')
'Time to inference from parsed data: 1253219'
- pandas DataFrame based inference request
# no conversion needed for pandas DataFrame
result_dataframe = ccfraud_pipeline.infer_from_file('./data/cc_data_10k.df.json', dataset=["*", "metadata"])
result_dataframe = ccfraud_pipeline.infer_from_file('./data/cc_data_10k.df.json', dataset=["*", "metadata"])
display(f"Time to parse input data: {result_dataframe['metadata.elapsed'][0][0]}")
display(f"Time to inference from parsed data: {result_dataframe['metadata.elapsed'][0][1]}")
'Time to parse input data: 51879691'
'Time to inference from parsed data: 2310435'
Run Inference From A Example
In this example, an inference of 50K inferences as an Apache Arrow file will be submitted to a model trained for reviewing IMDB reviews, and the first 5 results displayed.
results = imdb_pipeline.infer_from_file('./data/test_data_50K.arrow')
import polars as pl
outputs = pl.from_arrow(results)
display(outputs.head(5))
shape: (5, 4)
time | in.tensor | out.dense_1 | anomaly.count |
---|---|---|---|
datetime[ms] | list[f32] | list[f32] | i8 |
2023-03-20 20:53:50.170 | [11.0, 6.0, … 0.0] | [0.898019] | 0 |
2023-03-20 20:53:50.170 | [54.0, 548.0, … 20.0] | [0.056597] | 0 |
2023-03-20 20:53:50.170 | [1.0, 9259.0, … 1.0] | [0.92608] | 0 |
2023-03-20 20:53:50.170 | [10.0, 25.0, … 0.0] | [0.926919] | 0 |
2023-03-20 20:53:50.170 | [10.0, 37.0, … 0.0] | [0.661858] | 0 |
In this example, an inference will be submitted to the ccfraud_pipeline
with the file smoke_test.df.json
, a DataFrame formatted JSON file.
result = ccfraud_pipeline.infer_from_file('./data/smoke_test.df.json')
time | in.tensor | out.dense_1 | anomaly.count | |
---|---|---|---|---|
0 | 2023-02-15 23:07:07.497 | [1.0678324729, 0.2177810266, -1.7115145262, 0.682285721, 1.0138553067, -0.4335000013, 0.7395859437, -0.2882839595, -0.447262688, 0.5146124988, 0.3791316964, 0.5190619748, -0.4904593222, 1.1656456469, -0.9776307444, -0.6322198963, -0.6891477694, 0.1783317857, 0.1397992467, -0.3554220649, 0.4394217877, 1.4588397512, -0.3886829615, 0.4353492889, 1.7420053483, -0.4434654615, -0.1515747891, -0.2668451725, -1.4549617756] | [0.0014974177] | 0 |
Output Formats
DataFrame and Arrow
Output formats are based on the input types: pandas DataFrame inputs return pandas DataFrame, and Apache Arrow inputs return Apache Arrow objects.
The default columns returned are:
- time: The DateTime of the inference request.
- in: The input data.
- out: The output data. Outputs of the inference are based on the model’s outputs as
out.{model_output}
. This model only has one output -dense_1
, which is listed in theout.dense_1
column. If the model has multiple outputs, they would be listed asout.{outputname1}
,out.{outputname2}
, etc. - anomaly: Whether any Pipeline validation parameters were triggered. Includes the following fields.
anomaly.count
: Any anomalies detected from validations.anomaly.{validation}
: The validation that triggered the anomaly detection and whether it isTrue
(indicating an anomaly was detected) orFalse
. For more details, see Wallaroo SDK Essentials Guide: Anomaly Detection
Columns returned are controlled by the dataset_exclude
array parameter, which specifies which output columns to ignore. For example, if a model outputs the columns out.rambo
, out.main
, out.glibnar
, using the parameter dataset_exclude=["out.rambo", "out.glibnar"]
will exclude those columns from the output.
Parallel Inference via the Wallaroo SDK
Parallel Inference Inference Request
The await wallaroo.pipeline.Pipeline.parallel_infer(tensor, timeout, num_parallel, retries)
asynchronous method performs an inference as defined by the pipeline steps.
Parallel Inference Inference Request Parameters
Parameter | Type | Description |
---|---|---|
tensor | pandas.DataFrame OR pyarrow.Table (Required) | The data submitted to the pipeline for inference a pandas.DataFrame or Apache Arrow pyarrow.Table |
timeout | Integer (Optional) | A timeout in seconds before the inference throws an exception. The default is 15 second per call to accommodate large, complex models. Note that for a batch inference, this is per list item - with 10 inference requests, each would have a default timeout of 15 seconds. |
num_parallel | Integer (Optional) | The number of parallel threads used for the submission. This should be no more than four times the number of pipeline replicas. |
retries | Integer (Optional) | The number of retries per inference request submitted. |
dataset | List(String) (Optional) | The dataset of the inference result to return. By default this is set to ["*"] which returns [“time”, “in”, “out”, “anomaly”]. Other available datasets - [“metadata”]. IMPORTANT NOTE: 'time' must be included in the returned datasets for the Wallaroo SDK, or the SDK will return an error. n. For example: dataset=['time', 'out'] returned the datasets time and in , and no others. |
dataset_exclude | List(String) (Optional) | The datasets to exclude in the inference results returned values. For example: dataset=['*'], dataset_exclude['in'] would exclude the in dataset from being returned, but include the default datasets of [’time’, ‘out’, ‘anomaly’]. IMPORTANT NOTE: 'time' can not be excluded for the Wallaroo SDK, or the SDK will return an error. |
Parallel Inference Inference Request Returns
wallaroo.pipeline.Pipeline.parallel_infer
returns one of the following based on the tensor
input parameter.
- If a pandas DataFrame was submitted, a pandas DataFrame is returned.
- If an Apache Arrow table was submitted, an Apache Arrow table is returned.
The following fields are returned based on the dataset
and dataset_exclude
parameters.
Parameter | Type | Description |
---|---|---|
time | DateTime | The DateTime of the returned inference result. |
in | Any | The input parameters. Each in dataset field correlates to the input field from the inference request. For example, the inputs ['year_built', 'last_renovated', 'number_of_bedrooms'] generates the in dataset `[‘in.year_built’, ‘in.last_renovated’, ‘in.number_of_bedrooms’] |
out | Any | The output parameters. Each out dataset field correlates to the final output of the pipeline. For example, if the final output is ['house_price', 'recommended_starting_bid'] , the output fields would be ['out.house_price', 'out.recommended_starting_bid] . |
anomaly | Any | The detected anomalies based on the validations added to the pipeline. The field anomaly.count is always included, which displays a count of all validations that returned True , which indicates a detected anomaly. Other anomalies are listed by anomaly.{validation_name} . For more information, see Wallaroo Anomaly Detection. |
meta | Dict | Includes the following fields with the metadata dataset.
|
Parallel Inference Examples
Sequential Inference Example
The first example will show taking a pandas DataFrame with 25,000 rows, splitting those into 25,000 separate DataFrames with one row each, then submitting them sequentially. This simulates a situation where the data input sizes are so large they must be broken up for more efficient transmission and inferencing.
test_data = pd.read_json("./data/data_25k.df.json")
test_list = []
for index, row in test_data.head(1000).iterrows():
test_list.append(row.to_frame('text_input').reset_index(drop=True))
# show the first row as an example
test_list[0]
text_input | |
---|---|
0 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 16, 32, 23, 29, 32, 30, 19, 26, 17] |
#
# Run the inference sequentially to establish a baseline
#
now = datetime.datetime.now()
results = []
for df in test_list:
results.append(aloha_pipeline.infer(tensor=df, timeout=10))
total_sequential = datetime.datetime.now() - now
print(f"Elapsed = {total_sequential.total_seconds()} : {len(results)}")
Elapsed = 37.917126 : 1000
Parallel Infer with DataFrame Example
The following example shows using wallaroo.pipeline.Pipeline.parallel_infer
with a pandas DataFrames. It is automatically split for parallel inferences by the Wallaroo SDK.
We then compare it to the List of pandas DataFrames submitted sequentially.
timeout_secs=30
now = datetime.datetime.now()
parallel_results = await aloha_pipeline.parallel_infer(tensor=test_data.head(1000),
timeout=timeout_secs,
num_parallel=2*REPLICAS,
retries=3)
total_parallel = datetime.datetime.now() - now
print(f"Elapsed_in_parallel = {total_parallel.total_seconds()} : {len(parallel_results)}")
Elapsed_in_parallel = 7.691442 : 1000
parallel_results.head(20)
time | in.text_input | out.banjori | out.corebot | out.cryptolocker | out.dircrypt | out.gozi | out.kraken | out.locky | out.main | out.matsnu | out.pykspa | out.qakbot | out.ramdo | out.ramnit | out.simda | out.suppobox | anomaly.count | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2024-03-08 15:32:26.253 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 16, 32, 23, 29, 32, 30, 19, 26, 17] | [0.0015195842] | [0.98291475] | [0.012099553] | [4.7591206e-05] | [2.0289332e-05] | [0.00031977228] | [0.011029261] | [0.997564] | [0.010341614] | [0.008038961] | [0.016155045] | [0.0062362333] | [0.0009985747] | [1.7933435e-26] | [1.3889844e-27] | 0 |
1 | 2024-03-08 15:32:26.253 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 20, 19, 27, 14, 17, 24, 13, 23, 20, 18, 35, 18, 22, 23] | [7.447168e-18] | [6.735899e-08] | [0.17081985] | [1.3220147e-09] | [1.2758705e-24] | [0.22559549] | [0.3420985] | [0.99999994] | [0.3080186] | [0.1828217] | [3.8022332e-11] | [0.2062254] | [0.15215823] | [1.1701893e-30] | [3.1513734e-38] | 0 |
2 | 2024-03-08 15:32:26.253 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 33, 25, 36, 25, 31, 14, 32, 36, 25, 12, 35, 34, 30, 28, 27, 24, 29, 27] | [2.8598976e-21] | [9.301987e-08] | [0.04445297] | [6.163758e-09] | [8.3497386e-23] | [0.48234487] | [0.263329] | [1.0] | [0.29800338] | [0.22361773] | [1.5238979e-06] | [0.32820383] | [0.029332481] | [1.1995622e-31] | [0.0] | 0 |
3 | 2024-03-08 15:32:26.253 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 23, 22, 15, 12, 35, 34, 36, 12, 18, 24, 34, 32, 36, 12, 14, 16, 27, 22, 23] | [2.1387213e-15] | [3.8817338e-10] | [0.04559972] | [1.9090405e-07] | [1.3140474e-25] | [0.5954264] | [0.17374131] | [0.9999997] | [0.23151566] | [0.1759168] | [1.0876193e-09] | [0.21832275] | [0.012869264] | [6.1588803e-28] | [1.4386127e-35] | 0 |
4 | 2024-03-08 15:32:26.280 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 13, 14, 12, 33, 16, 23, 15, 22, 30, 28, 26, 12, 16, 32, 37, 29, 22, 28, 22, 16, 27, 32] | [9.4533425e-15] | [7.091165e-10] | [0.04981512] | [5.2914135e-09] | [7.413152e-19] | [1.5504575e-13] | [1.0791892e-15] | [0.9999989] | [1.5003076e-15] | [0.3307571] | [2.625885e-07] | [0.50362796] | [0.020393759] | [0.0] | [2.329197e-38] | 0 |
5 | 2024-03-08 15:32:26.293 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 29, 20, 33, 13, 36, 35, 30, 21, 29, 17, 26, 19, 25, 36, 14, 23, 16, 18, 15, 21, 18, 28, 35, 19] | [1.7247285e-17] | [8.1354194e-08] | [0.013697129] | [5.6086392e-11] | [1.4032912e-17] | [0.4946911] | [0.11978862] | [0.99999994] | [0.19000016] | [0.10596694] | [5.524429e-06] | [0.24210057] | [0.0069435085] | [1.2804814e-34] | [9.482465e-35] | 0 |
6 | 2024-03-08 15:32:26.299 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 36, 14, 12, 23, 14, 13, 20, 20, 23, 27, 36, 29, 35, 19, 33, 22, 25, 26, 32, 21] | [5.5500585e-18] | [3.3608643e-07] | [0.023452938] | [1.1318812e-10] | [1.0496957e-22] | [0.23692927] | [0.064456925] | [0.99999183] | [0.07306592] | [0.06499427] | [1.4302767e-08] | [0.11925243] | [0.0011031023] | [1.5206224e-32] | [0.0] | 0 |
7 | 2024-03-08 15:32:26.301 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 22, 28, 23, 20, 25, 21, 20, 16, 12, 33, 21, 14, 34, 34, 32, 19, 36, 17, 29, 26, 14, 29] | [3.9222568e-18] | [1.407435e-10] | [0.010946895] | [8.202812e-11] | [2.454965e-24] | [0.42107278] | [0.071240015] | [0.9982491] | [0.118182994] | [0.08340969] | [1.9207886e-09] | [0.16958171] | [0.0005199058] | [0.0] | [0.0] | 0 |
8 | 2024-03-08 15:32:26.302 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 30, 33, 29, 37, 24, 33, 16, 20, 24] | [4.0574426e-11] | [1.087887e-09] | [0.17916852] | [1.7313088e-06] | [8.697261e-18] | [9.197122e-16] | [3.8521073e-17] | [0.9999977] | [3.2654394e-17] | [0.32568428] | [6.834302e-09] | [0.37007827] | [0.44918332] | [0.0] | [2.082403e-26] | 0 |
9 | 2024-03-08 15:32:26.311 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 29, 19, 35, 31, 15, 14, 21, 26, 31, 34, 27, 22] | [2.2576288e-09] | [2.0812616e-09] | [0.17788404] | [1.1887528e-08] | [1.078572e-11] | [0.041252796] | [0.21430437] | [0.9999988] | [0.17853741] | [0.13382334] | [0.000114089744] | [0.14033836] | [0.011299953] | [3.575825e-24] | [7.164664e-24] | 0 |
10 | 2024-03-08 15:32:26.324 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 25, 19, 26, 30, 19, 29, 37, 20, 24, 23, 22, 20, 20, 12, 35, 29, 26, 16, 35, 36, 32, 23, 19] | [7.892642e-12] | [3.0390834e-07] | [0.015696561] | [5.4462657e-13] | [1.2192533e-22] | [2.9611054e-17] | [2.630555e-20] | [0.9999961] | [6.9846006e-20] | [0.28895643] | [1.8219538e-10] | [0.5132747] | [0.03162864] | [0.0] | [6.496134e-32] | 0 |
11 | 2024-03-08 15:32:26.324 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 33, 34, 15, 23, 28, 34, 18, 33, 33] | [2.6560714e-16] | [5.9408145e-09] | [0.12814313] | [3.3345504e-08] | [2.2118923e-18] | [0.3078206] | [0.27681428] | [0.9999999] | [0.27904558] | [0.17737378] | [7.047457e-08] | [0.17205144] | [0.20136176] | [3.6787982e-29] | [4.919293e-33] | 0 |
12 | 2024-03-08 15:32:26.332 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 28, 30, 13, 26, 28, 30, 33, 25, 30, 31, 30, 26, 34, 19, 18, 23, 18, 15] | [1.9262531e-07] | [0.00011627592] | [0.015093419] | [6.0622415e-06] | [2.7445957e-08] | [0.1944085] | [0.11690311] | [0.9999991] | [0.17412043] | [0.06493864] | [0.49536943] | [0.08959357] | [0.005527823] | [2.4333167e-38] | [1.3592863e-25] | 0 |
13 | 2024-03-08 15:32:26.340 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 19, 17, 22, 25, 35, 29, 26, 15] | [1.8286044e-05] | [0.00021055655] | [0.012560264] | [1.669594e-12] | [1.2260803e-07] | [0.007982212] | [0.01670425] | [0.017594405] | [0.017098006] | [0.011611045] | [0.00011716164] | [0.009795011] | [0.010660369] | [3.187273e-35] | [6.004795e-27] | 0 |
14 | 2024-03-08 15:32:26.364 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 22, 17, 34, 27, 18, 18, 30] | [3.6237112e-22] | [1.0416503e-05] | [0.3348774] | [2.1746243e-06] | [8.617319e-23] | [0.029006457] | [0.20757225] | [0.99999344] | [0.13615955] | [0.08263349] | [2.8077036e-09] | [0.056751817] | [0.100090414] | [1.0977599e-18] | [1.6076299e-32] | 0 |
15 | 2024-03-08 15:32:26.369 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 21, 19, 31, 31, 19, 36, 22, 12, 37, 18, 22, 31, 29] | [2.6339812e-11] | [3.014685e-10] | [0.04157271] | [2.9721992e-11] | [4.1457778e-19] | [2.8498805e-12] | [1.0917219e-13] | [0.99999815] | [1.5328618e-13] | [0.15687591] | [6.499695e-07] | [0.2797901] | [0.07243411] | [6.264585e-28] | [3.7361817e-33] | 0 |
16 | 2024-03-08 15:32:26.371 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 15, 26, 15, 14, 19, 32, 24, 33, 13, 20, 22, 32, 14, 25, 26, 35, 22, 12, 31, 23, 19, 31] | [2.3916345e-11] | [1.0221278e-06] | [0.0036410673] | [3.0198066e-10] | [6.5029376e-10] | [0.01702937] | [0.024708282] | [0.99999654] | [0.031047806] | [0.029724406] | [1.1598447e-05] | [0.053846903] | [6.46801e-05] | [1.9701536e-31] | [8.561327e-37] | 0 |
17 | 2024-03-08 15:32:26.370 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 31, 21, 21, 26, 33, 17, 16, 23, 28, 20, 19, 29, 25, 24, 30, 20, 35, 19, 36] | [5.989164e-14] | [4.957251e-05] | [0.014003561] | [6.2121716e-13] | [6.8363566e-18] | [0.15793473] | [0.0400572] | [0.9999906] | [0.057762165] | [0.036209285] | [1.1137857e-06] | [0.05882588] | [0.021252671] | [2.852255e-32] | [2.9058335e-35] | 0 |
18 | 2024-03-08 15:32:26.392 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 31, 14, 18, 29, 22, 19, 13, 23, 36, 16, 24, 17, 31, 35, 24, 26, 33, 37] | [7.04367e-15] | [3.8310918e-10] | [0.010476033] | [5.5391797e-13] | [4.2660885e-18] | [1.8002026e-13] | [3.1393156e-15] | [0.99999946] | [5.5198312e-15] | [0.14957657] | [3.9449355e-07] | [0.31189042] | [0.0042013763] | [0.0] | [3.35857e-34] | 0 |
19 | 2024-03-08 15:32:26.399 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 20, 20, 31, 30, 33, 32, 23, 24] | [8.1578895e-05] | [0.005662437] | [0.25973395] | [0.00036145633] | [2.2012752e-13] | [0.022834523] | [0.16723366] | [0.9992838] | [0.116028585] | [0.06689821] | [9.2623617e-07] | [0.03539415] | [0.22199522] | [1.975508e-20] | [9.651789e-15] | 0 |
Parallel Infer with Apache Arrow Table
The following example shows using wallaroo.pipeline.Pipeline.parallel_infer
with a pandas DataFrames. It is automatically split for parallel inferences by the Wallaroo SDK.
We then compare it to the List of pandas DataFrames submitted sequentially.
# convert the DataFrame to an Arrow Table
import pyarrow as pa
timeout_secs=30
now = datetime.datetime.now()
test_data_arrow_table = pa.Table.from_pandas(test_data.head(1000))
parallel_results = await aloha_pipeline.parallel_infer(tensor=test_data_arrow_table,
timeout=timeout_secs,
num_parallel=2*REPLICAS,
retries=3)
total_parallel = datetime.datetime.now() - now
print(f"Elapsed_in_parallel = {total_parallel.total_seconds()} : {len(parallel_results)}")
Elapsed_in_parallel = 3.364765 : 1000
We can quickly see the speed benefits of using parallel infer requests over sequential requests, and even more speed when going from a pandas DataFrame to an Apache Arrow table.