Step 03: mobilenet and resnet50 Shadow Deploy

This tutorial and the assets can be downloaded as part of the Wallaroo Tutorials repository.

Step 03: Detecting Objects Using Shadow Deploy

The following tutorial demonstrates how to use two trained models, one based on the resnet50, the other on mobilenet, deployed in Wallaroo to detect objects. This builds on the previous tutorials in this series, Step 01: Detecting Objects Using mobilenet" and “Step 02: Detecting Objects Using resnet50”.

For this tutorial, the Wallaroo feature Shadow Deploy will be used to submit inference requests to both models at once. The mobilnet object detector is the control and the faster-rcnn object detector is the challenger. The results between the two will be compared for their confidence, and that confidence will be used to draw bounding boxes around identified objects.

This process will use the following steps:

  1. Create a Wallaroo workspace and pipeline.
  2. Upload a trained resnet50 ML model and trained mobilenet model and add them as a shadow deployed step with the mobilenet as the control model.
  3. Deploy the pipeline.
  4. Perform an inference on a sample image.
  5. Based on the
  6. Draw the detected objects, their bounding boxes, their classifications, and the confidence of the classifications on the provided image.
  7. Review our results.

Steps

Import Libraries

The first step will be to import our libraries. Please check with Step 00: Introduction and Setup and verify that the necessary libraries and applications are added to your environment.

import torch
import pickle
import wallaroo
from wallaroo.object import EntityNotFoundError
from wallaroo.framework import Framework

import numpy as np
import json
import requests
import time
import pandas as pd
from CVDemoUtils import CVDemo

# used to display dataframe information without truncating
from IPython.display import display
import pandas as pd
pd.set_option('display.max_colwidth', None)

# used for unique connection names

import string
import random
suffix= ''.join(random.choice(string.ascii_lowercase) for i in range(4))

Connect to the Wallaroo Instance

The first step is to connect to Wallaroo through the Wallaroo client. The Python library is included in the Wallaroo install and available through the Jupyter Hub interface provided with your Wallaroo environment.

This is accomplished using the wallaroo.Client() command, which provides a URL to grant the SDK permission to your specific Wallaroo environment. When displayed, enter the URL into a browser and confirm permissions. Store the connection into a variable that can be referenced later.

If logging into the Wallaroo instance through the internal JupyterHub service, use wl = wallaroo.Client(). For more information on Wallaroo Client settings, see the Client Connection guide.

# Login through local service

wl = wallaroo.Client()

Set Variables

The following variables and methods are used later to create or connect to an existing workspace, pipeline, and model. This example has both the resnet model, and a post process script.

workspace_name = f'shadowimageworkspacetest{suffix}'
pipeline_name = f'shadowimagepipelinetest{suffix}'
control_model_name = f'mobilenet{suffix}'
control_model_file_name = 'models/mobilenet.pt.onnx'
challenger_model_name = f'resnet50{suffix}'
challenger_model_file_name = 'models/frcnn-resnet.pt.onnx'
def get_workspace(name):
    workspace = None
    for ws in wl.list_workspaces():
        if ws.name() == name:
            workspace= ws
    if(workspace == None):
        workspace = wl.create_workspace(name)
    return workspace

def get_pipeline(name):
    try:
        pipeline = wl.pipelines_by_name(name)[0]
    except EntityNotFoundError:
        pipeline = wl.build_pipeline(name)
    return pipeline

Create Workspace

The workspace will be created or connected to, and set as the default workspace for this session. Once that is done, then all models and pipelines will be set in that workspace.

workspace = get_workspace(workspace_name)
wl.set_current_workspace(workspace)
wl.get_current_workspace()
{'name': 'shadowimageworkspacetestydhi', 'id': 17, 'archived': False, 'created_by': '4e296632-35b3-460e-85fe-565e311bc566', 'created_at': '2023-07-14T15:18:03.466347+00:00', 'models': [], 'pipelines': []}

Create Pipeline and Upload Model

We will now create or connect to an existing pipeline as named in the variables above, then upload each of the models.

pipeline = get_pipeline(pipeline_name)
control =  wl.upload_model(control_model_name, control_model_file_name, framework=Framework.ONNX).configure(batch_config="single")
challenger = wl.upload_model(challenger_model_name, challenger_model_file_name, framework=Framework.ONNX).configure(batch_config="single")

Shadow Deploy Pipeline

For this step, rather than deploying each model into a separate step, both will be deployed into a single step as a Shadow Deploy step. This will take the inference input data and process it through both pipelines at the same time. The inference results for the control will be stored in it’s ['outputs'] array, while the results for the challenger are stored the ['shadow_data'] array.

pipeline.add_shadow_deploy(control, [challenger])
nameshadowimagepipelinetestydhi
created2023-07-14 15:18:05.557027+00:00
last_updated2023-07-14 15:18:05.557027+00:00
deployed(none)
tags
versions05cd00dc-cf35-4a96-bdc3-f624d7b36477
steps
pipeline.deploy()
nameshadowimagepipelinetestydhi
created2023-07-14 15:18:05.557027+00:00
last_updated2023-07-14 15:19:41.498743+00:00
deployedTrue
tags
versions64f3cfe9-bce4-4c4f-8328-9ee1cef3fe2d, 05cd00dc-cf35-4a96-bdc3-f624d7b36477
stepsmobilenetydhi
pipeline.status()
{'status': 'Running',
 'details': [],
 'engines': [{'ip': '10.244.3.137',
   'name': 'engine-c7bdfbd9c-qfgf9',
   'status': 'Running',
   'reason': None,
   'details': [],
   'pipeline_statuses': {'pipelines': [{'id': 'shadowimagepipelinetestydhi',
      'status': 'Running'}]},
   'model_statuses': {'models': [{'name': 'mobilenetydhi',
      'version': '06ab0c1b-4151-4ab7-ba74-9a83a5c288f2',
      'sha': 'f4c7009e53b679f5e44d70d9612e8dc365565cec88c25b5efa11b903b6b7bdc6',
      'status': 'Running'},
     {'name': 'resnet50ydhi',
      'version': '7811489f-cf8b-469e-a917-9070c842a969',
      'sha': 'ee606dc9776a1029420b3adf59b6d29395c89d1d9460d75045a1f2f152d288e7',
      'status': 'Running'}]}}],
 'engine_lbs': [{'ip': '10.244.4.182',
   'name': 'engine-lb-584f54c899-qdzqk',
   'status': 'Running',
   'reason': None,
   'details': []}],
 'sidekicks': []}

Prepare input image

Next we will load a sample image and resize it to the width and height required for the object detector.

We will convert the image to a numpy ndim array and add it do a dictionary


imagePath = 'data/images/input/example/store-front.png'

# The image width and height needs to be set to what the model was trained for.  In this case 640x480.
cvDemo = CVDemo()

# The size the image will be resized to meet the input requirements of the object detector
width = 640
height = 480
tensor, controlImage = cvDemo.loadImageAndResize(imagePath, width, height)
challengerImage = controlImage.copy()

# get npArray from the tensorFloat
npArray = tensor.cpu().numpy()

#creates a dictionary with the wallaroo "tensor" key and the numpy ndim array representing image as the value.
# dictData = {"tensor": npArray.tolist()}

dictData = {"tensor":[npArray]}
dataframedata = pd.DataFrame(dictData)

Run Inference using Shadow Deployment

Now lets have the model detect the objects on the image by running inference and extracting the results

startTime = time.time()
infResults = pipeline.infer(dataframedata, dataset=["*", "metadata.elapsed"])
endTime = time.time()

Extract Control Inference Results

First we’ll extract the inference result data for the control model and map it onto the image.

df = pd.DataFrame(columns=['classification','confidence','x','y','width','height'])
pd.options.mode.chained_assignment = None  # default='warn'
pd.options.display.float_format = '{:.2%}'.format

# Points to where all the inference results are
# boxList = infResults[0]["out.output"]
boxList = infResults.loc[0]["out.output"]

# # reshape this to an array of bounding box coordinates converted to ints
boxA = np.array(boxList)
controlBoxes = boxA.reshape(-1, 4)
controlBoxes = controlBoxes.astype(int)

df[['x', 'y','width','height']] = pd.DataFrame(controlBoxes)

controlClasses = infResults.loc[0]["out.2519"]
controlConfidences = infResults.loc[0]["out.2518"]

results = {
    'model_name' : control.name(),
    'pipeline_name' : pipeline.name(),
    'width': width,
    'height': height,
    'image' : controlImage,
    'boxes' : controlBoxes,
    'classes' : controlClasses,
    'confidences' : controlConfidences,
    'confidence-target' : 0.9,
    'color':CVDemo.RED, # color to draw bounding boxes and the text in the statistics
    'inference-time': (endTime-startTime),
    'onnx-time' : 0,                
}
cvDemo.drawAndDisplayDetectedObjectsWithClassification(results)

Display the Control Results

Here we will use the Wallaroo CVDemo helper class to draw the control model results on the image.

The full results will be displayed in a dataframe with columns representing the classification, confidence, and bounding boxes of the objects identified.

Once extracted from the results we will want to reshape the flattened array into an array with 4 elements (x,y,width,height).

idx = 0 
cocoClasses = cvDemo.getCocoClasses()
for idx in range(0,len(controlClasses)):
    df['classification'][idx] = cocoClasses[controlClasses[idx]] # Classes contains the 80 different COCO classificaitons
    df['confidence'][idx] = controlConfidences[idx]
df
classificationconfidencexywidthheight
0car99.82%278335494471
1person95.43%3230366365
2umbrella81.33%117256209322
3person72.38%183310203367
4umbrella58.16%213273298309
5person47.49%155307180365
6person45.20%263315303422
7person44.17%830436361
8person41.89%608330628375
9person40.04%557330582395
10potted plant39.22%241193315292
11person38.94%547329573397
12person38.50%615331634372
13person37.89%553321576374
14person37.04%147304170366
15person36.11%515322537369
16person34.55%562317586373
17person32.37%531329557399
18person32.19%239306279428
19person30.28%320308343359
20person26.50%289311310380
21person23.09%371307394337
22person22.66%295300340373
23person22.23%130625362
24person21.88%484319506349
25person21.13%272327297405
26person20.15%136304160363
27person19.68%520338543392
28person16.86%478317498348
29person16.55%365319391344
30person16.22%621339639403
31potted plant16.18%0361215470
32person15.13%279313300387
33person10.62%428312444337
34umbrella10.01%215252313315
35umbrella9.10%295294346357
36umbrella7.95%358293402319
37umbrella7.81%319307344356
38potted plant7.18%166331221439
39umbrella6.38%129264200360
40person5.69%428318450343

Display the Challenger Results

Here we will use the Wallaroo CVDemo helper class to draw the challenger model results on the input image.

challengerDf = pd.DataFrame(columns=['classification','confidence','x','y','width','height'])
pd.options.mode.chained_assignment = None  # default='warn'
pd.options.display.float_format = '{:.2%}'.format

# Points to where all the inference results are
boxList = infResults.loc[0][f"out_{challenger_model_name}.output"]

# outputs = results['outputs']
# boxes = outputs[0]

# # reshape this to an array of bounding box coordinates converted to ints
# boxList = boxes['Float']['data']
boxA = np.array(boxList)
challengerBoxes = boxA.reshape(-1, 4)
challengerBoxes = challengerBoxes.astype(int)

challengerDf[['x', 'y','width','height']] = pd.DataFrame(challengerBoxes)

challengerClasses = infResults.loc[0][f"out_{challenger_model_name}.3070"]
challengerConfidences = infResults.loc[0][f"out_{challenger_model_name}.3069"]

results = {
    'model_name' : challenger.name(),
    'pipeline_name' : pipeline.name(),
    'width': width,
    'height': height,
    'image' : challengerImage,
    'boxes' : challengerBoxes,
    'classes' : challengerClasses,
    'confidences' : challengerConfidences,
    'confidence-target' : 0.9,
    'color':CVDemo.RED, # color to draw bounding boxes and the text in the statistics
    'inference-time': (endTime-startTime),
    'onnx-time' : 0,                
}
cvDemo.drawAndDisplayDetectedObjectsWithClassification(results)

Display Challenger Results

The inference results for the objects detected by the challenger model will be displayed including the confidence values. Once extracted from the results we will want to reshape the flattened array into an array with 4 elements (x,y,width,height).

idx = 0 
for idx in range(0,len(challengerClasses)):
    challengerDf['classification'][idx] = cvDemo.CLASSES[challengerClasses[idx]] # Classes contains the 80 different COCO classificaitons
    challengerDf['confidence'][idx] = challengerConfidences[idx]
challengerDf
classificationconfidencexywidthheight
0car99.91%274332496472
1person99.77%536320563409
2person98.88%3130569370
3car97.02%617335639424
4potted plant96.82%141337164365
.....................
81person5.61%312316341371
82umbrella5.60%328275418337
83person5.54%416320425331
84person5.52%406317419331
85person5.14%277308292390

86 rows × 6 columns

pipeline.undeploy()
nameshadowimagepipelinetestydhi
created2023-07-14 15:18:05.557027+00:00
last_updated2023-07-14 15:19:41.498743+00:00
deployedFalse
tags
versions64f3cfe9-bce4-4c4f-8328-9ee1cef3fe2d, 05cd00dc-cf35-4a96-bdc3-f624d7b36477
stepsmobilenetydhi

Conclusion

Notice the difference in the control confidence and the challenger confidence. Clearly we can see in this example the challenger resnet50 model is performing better than the control mobilenet model. This is likely due to the fact that frcnn resnet50 model is a 2 stage object detector vs the frcnn mobilenet is a single stage detector.

This completes using Wallaroo’s shadow deployment feature to compare different computer vision models.