Wallaroo SDK Upload Tutorial: SKLearn Clustering Kmeans

How to upload a SKLearn Clustering Kmeans to Wallaroo

Table of Contents

This tutorial can be downloaded as part of the Wallaroo Tutorials repository.

Wallaroo Model Upload via the Wallaroo SDK: SKLearn Clustering KMeans

The following tutorial demonstrates how to upload a SKLearn Clustering KMeans model to a Wallaroo instance.

Tutorial Goals

Demonstrate the following:

  • Upload a SKLearn Clustering KMeans model to a Wallaroo instance.
  • Create a pipeline and add the model as a pipeline step.
  • Perform a sample inference.

Prerequisites

  • A Wallaroo version 2023.2.1 or above instance.

References

Tutorial Steps

Import Libraries

The first step is to import the libraries we’ll be using. These are included by default in the Wallaroo instance’s JupyterHub service.

import json
import os
import pickle

import wallaroo
from wallaroo.pipeline import Pipeline
from wallaroo.deployment_config import DeploymentConfigBuilder
from wallaroo.object import EntityNotFoundError
from wallaroo.framework import Framework

import os
os.environ["MODELS_ENABLED"] = "true"

import pyarrow as pa
import numpy as np
import pandas as pd

Open a Connection to Wallaroo

The next step is connect to Wallaroo through the Wallaroo client. The Python library is included in the Wallaroo install and available through the Jupyter Hub interface provided with your Wallaroo environment.

This is accomplished using the wallaroo.Client() command, which provides a URL to grant the SDK permission to your specific Wallaroo environment. When displayed, enter the URL into a browser and confirm permissions. Store the connection into a variable that can be referenced later.

If logging into the Wallaroo instance through the internal JupyterHub service, use wl = wallaroo.Client(). If logging in externally, update the wallarooPrefix and wallarooSuffix variables with the proper DNS information. For more information on Wallaroo DNS settings, see the Wallaroo DNS Integration Guide.

wl = wallaroo.Client()

Set Variables and Helper Functions

We’ll set the name of our workspace, pipeline, models and files. Workspace names must be unique across the Wallaroo workspace. For this, we’ll add in a randomly generated 4 characters to the workspace name to prevent collisions with other users’ workspaces. If running this tutorial, we recommend hard coding the workspace name so it will function in the same workspace each time it’s run.

We’ll set up some helper functions that will either use existing workspaces and pipelines, or create them if they do not already exist.

def get_workspace(name):
    workspace = None
    for ws in wl.list_workspaces():
        if ws.name() == name:
            workspace= ws
    if(workspace == None):
        workspace = wl.create_workspace(name)
    return workspace

def get_pipeline(name):
    try:
        pipeline = wl.pipelines_by_name(name)[0]
    except EntityNotFoundError:
        pipeline = wl.build_pipeline(name)
    return pipeline

import string
import random

# make a random 4 character suffix to prevent overwriting other user's workspaces
suffix= ''.join(random.choice(string.ascii_lowercase) for i in range(4))
workspace_name = f'sklearn-clustering-kmeans{suffix}'
pipeline_name = f'sklearn-clustering-kmeans'

model_name = 'sklearn-clustering-kmeans'
model_file_name = "models/model-auto-conversion_sklearn_kmeans.pkl"

Create Workspace and Pipeline

We will now create the Wallaroo workspace to store our model and set it as the current workspace. Future commands will default to this workspace for pipeline creation, model uploads, etc. We’ll create our Wallaroo pipeline to deploy our model.

workspace = get_workspace(workspace_name)
wl.set_current_workspace(workspace)

pipeline = get_pipeline(pipeline_name)

Configure Data Schemas

SKLearn models are uploaded to Wallaroo through the Wallaroo Client upload_model method.

Upload SKLearn Model Parameters

The following parameters are required for SKLearn models. Note that while some fields are considered as optional for the upload_model method, they are required for proper uploading of a SKLearn model to Wallaroo.

ParameterTypeDescription
namestring (Required)The name of the model. Model names are unique per workspace. Models that are uploaded with the same name are assigned as a new version of the model.
pathstring (Required)The path to the model file being uploaded.
frameworkstring (Upload Method Optional, SKLearn model Required)Set as the Framework.SKLEARN.
input_schemapyarrow.lib.Schema (Upload Method Optional, SKLearn model Required)The input schema in Apache Arrow schema format.
output_schemapyarrow.lib.Schema (Upload Method Optional, SKLearn model Required)The output schema in Apache Arrow schema format.
convert_waitbool (Upload Method Optional, SKLearn model Optional) (Default: True)
  • True: Waits in the script for the model conversion completion.
  • False: Proceeds with the script without waiting for the model conversion process to display complete.

Once the upload process starts, the model is containerized by the Wallaroo instance. This process may take up to 10 minutes.

input_schema = pa.schema([
    pa.field('inputs', pa.list_(pa.float64(), list_size=4))
])

output_schema = pa.schema([
    pa.field('predictions', pa.int32())
])

Upload Model

The model will be uploaded with the framework set as Framework.SKLEARN.

model = wl.upload_model(model_name, 
                        model_file_name, 
                        framework=Framework.SKLEARN, 
                        input_schema=input_schema, 
                        output_schema=output_schema)
model
Waiting for model conversion... It may take up to 10.0min.
Model is Pending conversion.......Converting............Ready.
Namesklearn-clustering-kmeans
Version1644dac9-5447-4654-b39f-a12560b1db55
File Namemodel-auto-conversion_sklearn_kmeans.pkl
SHAb378a614854619dd573ec65b9b4ac73d0b397d50a048e733d96b68c5fdbec896
Statusready
Image Pathproxy.replicated.com/proxy/wallaroo/ghcr.io/wallaroolabs/mlflow-deploy:v2023.3.0-main-3509
Updated At2023-13-Jul 17:57:33
model.config().runtime()
'mlflow'

Deploy Pipeline

The model is uploaded and ready for use. We’ll add it as a step in our pipeline, then deploy the pipeline. For this example we’re allocated 0.25 cpu and 4 Gi RAM to the pipeline through the pipeline’s deployment configuration.

deployment_config = DeploymentConfigBuilder() \
    .cpus(0.25).memory('1Gi') \
    .build()
# clear the pipeline if it was used before
pipeline.undeploy()
pipeline.clear()

pipeline.add_model_step(model)

pipeline.deploy(deployment_config=deployment_config)
pipeline.status()
{'status': 'Running',
 'details': [],
 'engines': [{'ip': '10.244.9.186',
   'name': 'engine-6c546c75dd-xhjx6',
   'status': 'Running',
   'reason': None,
   'details': [],
   'pipeline_statuses': {'pipelines': [{'id': 'sklearn-clustering-kmeans',
      'status': 'Running'}]},
   'model_statuses': {'models': [{'name': 'sklearn-clustering-kmeans',
      'version': '1644dac9-5447-4654-b39f-a12560b1db55',
      'sha': 'b378a614854619dd573ec65b9b4ac73d0b397d50a048e733d96b68c5fdbec896',
      'status': 'Running'}]}}],
 'engine_lbs': [{'ip': '10.244.9.185',
   'name': 'engine-lb-584f54c899-9j8gf',
   'status': 'Running',
   'reason': None,
   'details': []}],
 'sidekicks': [{'ip': '10.244.9.184',
   'name': 'engine-sidekick-sklearn-clustering-kmeans-269-5d9597dc9f-gqqxf',
   'status': 'Running',
   'reason': None,
   'details': [],
   'statuses': '\n'}]}

Inference

SKLearn models must have all of the data as one line to prevent columns from being read out of order when submitting in JSON. The following will take in the data, convert the rows into a single inputs for the table, then perform the inference. From the output_schema we have defined the output as predictions which will be displayed in our inference result output as out.predictions.

data = pd.read_json('./data/test-sklearn-kmeans.json')
display(data)

# move the column values to a single array input
mock_dataframe = pd.DataFrame({"inputs": data[:2].values.tolist()})
display(mock_dataframe)
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
05.13.51.40.2
14.93.01.40.2
inputs
0[5.1, 3.5, 1.4, 0.2]
1[4.9, 3.0, 1.4, 0.2]
result = pipeline.infer(mock_dataframe)
display(result)
timein.inputsout.predictionscheck_failures
02023-07-13 18:01:14.756[5.1, 3.5, 1.4, 0.2]10
12023-07-13 18:01:14.756[4.9, 3.0, 1.4, 0.2]10

Undeploy Pipelines

With the tutorial complete, the pipeline is undeployed to return the resources back to the cluster.

pipeline.undeploy()
namesklearn-clustering-kmeans
created2023-07-13 17:58:35.744857+00:00
last_updated2023-07-13 17:58:35.744857+00:00
deployedFalse
tags
versions386117da-6d79-4349-a774-9610cc9df1bb
stepssklearn-clustering-kmeans