Wallaroo SDK Upload Arbitrary Python Tutorial: Generate VGG16 Model
How to generate a VGG166 model for arbitrary python model deployment in Wallaroo.
The following tutorials cover how to upload sample arbitrary python models into a Wallaroo instance.
Parameter | Description |
---|---|
Web Site | https://www.python.org/ |
Supported Libraries | python==3.8 |
Framework | Framework.CUSTOM aka custom |
Runtime | Containerized aka mlflow |
Arbitrary Python models, also known as Bring Your Own Predict (BYOP) allow for custom model deployments with supporting scripts and artifacts. These are used with pre-trained models (PyTorch, Tensorflow, etc) along with whatever supporting artifacts they require. Supporting artifacts can include other Python modules, model files, etc. These are zipped with all scripts, artifacts, and a requirements.txt
file that indicates what other Python models need to be imported that are outside of the typical Wallaroo platform.
Contrast this with Wallaroo Python models - aka “Python steps”. These are standalone python scripts that use the python libraries natively supported by the Wallaroo platform. These are used for either simple model deployment (such as ARIMA Statsmodels), or data formatting such as the postprocessing steps. A Wallaroo Python model will be composed of one Python script that matches the Wallaroo requirements.
Arbitrary Python (BYOP) models are uploaded to Wallaroo via a ZIP file with the following components:
Artifact | Type | Description |
---|---|---|
Python scripts aka .py files with classes that extend mac.inference.Inference and mac.inference.creation.InferenceBuilder | Python Script | Extend the classes mac.inference.Inference and mac.inference.creation.InferenceBuilder . These are included with the Wallaroo SDK. Further details are in Arbitrary Python Script Requirements. Note that there is no specified naming requirements for the classes that extend mac.inference.Inference and mac.inference.creation.InferenceBuilder - any qualified class name is sufficient as long as these two classes are extended as defined below. |
requirements.txt | Python requirements file | This sets the Python libraries used for the arbitrary python model. These libraries should be targeted for Python 3.8 compliance. These requirements and the versions of libraries should be exactly the same between creating the model and deploying it in Wallaroo. This insures that the script and methods will function exactly the same as during the model creation process. |
Other artifacts | Files | Other models, files, and other artifacts used in support of this model. |
For example, the if the arbitrary python model will be known as vgg_clustering
, the contents may be in the following structure, with vgg_clustering
as the storage directory:
vgg_clustering\
feature_extractor.h5
kmeans.pkl
custom_inference.py
requirements.txt
Note the inclusion of the custom_inference.py
file. This file name is not required - any Python script or scripts that extend the classes listed above are sufficient. This Python script could have been named vgg_custom_model.py
or any other name as long as it includes the extension of the classes listed above.
The sample arbitrary python model file is created with the command zip -r vgg_clustering.zip vgg_clustering/
.
Wallaroo Arbitrary Python uses the Wallaroo SDK mac
module, included in the Wallaroo SDK 2023.2.1 and above. See the Wallaroo SDK Install Guides for instructions on installing the Wallaroo SDK.
The entry point of the arbitrary python model is any python script that extends the following classes. These are included with the Wallaroo SDK. The required methods that must be overridden are specified in each section below.
mac.inference.Inference
interface serves model inferences based on submitted input some input. Its purpose is to serve inferences for any supported arbitrary model framework (e.g. scikit
, keras
etc.).
classDiagram class Inference { <<Abstract>> +model Optional[Any] +expected_model_types()* Set +predict(input_data: InferenceData)* InferenceData -raise_error_if_model_is_not_assigned() None -raise_error_if_model_is_wrong_type() None }
mac.inference.creation.InferenceBuilder
builds a concrete Inference
, i.e. instantiates an Inference
object, loads the appropriate model and assigns the model to to the Inference object.
classDiagram class InferenceBuilder { +create(config InferenceConfig) * Inference -inference()* Any }
Object | Type | Description |
---|---|---|
model Optional[Any] | An optional list of models that match the supported frameworks from wallaroo.framework.Framework included in the arbitrary python script. Note that this is optional - no models are actually required. A BYOP can refer to a specific model(s) used, be used for data processing and reshaping for later pipeline steps, or other needs. |
Method | Returns | Description |
---|---|---|
expected_model_types (Required) | Set | Returns a Set of models expected for the inference as defined by the developer. Typically this is a set of one. Wallaroo checks the expected model types to verify that the model submitted through the InferenceBuilder method matches what this Inference class expects. |
_predict (input_data: mac.types.InferenceData) (Required) | mac.types.InferenceData | The entry point for the Wallaroo inference with the following input and output parameters that are defined when the model is updated.
InferenceDataValidationError exception is raised when the input data does not match mac.types.InferenceData . |
raise_error_if_model_is_not_assigned | N/A | Error when expected_model_types is not set. |
raise_error_if_model_is_wrong_type | N/A | Error when the model does not match the expected_model_types . |
InferenceBuilder
builds a concrete Inference
, i.e. instantiates an Inference
object, loads the appropriate model and assigns the model to the Inference.
classDiagram class InferenceBuilder { +create(config InferenceConfig) * Inference -inference()* Any }
Each model that is included requires its own InferenceBuilder
. InferenceBuilder
loads one model, then submits it to the Inference
class when created. The Inference
class checks this class against its expected_model_types()
Set.
Method | Returns | Description |
---|---|---|
create(config mac.config.inference.CustomInferenceConfig) (Required) | The custom Inference instance. | Creates an Inference subclass, then assigns a model and attributes. The CustomInferenceConfig is used to retrieve the config.model_path , which is a pathlib.Path object pointing to the folder where the model artifacts are saved. Every artifact loaded must be relative to config.model_path . This is set when the arbitrary python .zip file is uploaded and the environment for running it in Wallaroo is set. For example: loading the artifact vgg_clustering\feature_extractor.h5 would be set with config.model_path \ feature_extractor.h5 . The model loaded must match an existing module. For our example, this is from sklearn.cluster import KMeans , and this must match the Inference expected_model_types . |
inference | custom Inference instance. | Returns the instantiated custom Inference object created from the create method. |
Arbitrary Python always run in the containerized model runtime.
How to generate a VGG166 model for arbitrary python model deployment in Wallaroo.
How to deploy a VGG166 model as a arbitrary python model in Wallaroo.